您当前的位置:首页 > 互联网百科 > 大数据

一份优秀的数据分析报告应该怎么写?

时间:2023-08-16 17:34:29  来源:微信公众号  作者:接地气的陈老师

很多同学喜欢问:有没有数据分析报告模板可以抄。其实如果掌握了写报告的方法,根本不需要模板抄。

而所谓的模板,为了图高大全,往往章节很多很多很多。真实工作中真这么汇报估计既把自己累死,又把听报告的急死。今天我们就还原到工作场景中,看看数据分析报告该怎么写。

数据分析报告有两种基本模式:

1、你问我答:有明确的问题要解答

2、我说你听:无明确问题,需要从常规数据中解读

今天先讲:你问我答。因为有明确问题,所以回答起来更聚焦,容易讲解。

01 初级报告

一份优秀的数据分析报告,就该这么写!

请大家看上图,然后自己先作答:

1、昨天的销售业绩是多少

2、明天的销售业绩是多少

3、今天的销售业绩是多

问题1解读

大家记得这个标准:一问一答,正面回答,简单清晰。昨天的销售业绩这个数很清楚的,答出来就行了。答1:昨天的销售业绩是1000万。OK,过关。

问题2解读

注意时间状态。明天,是还没有发生的,因此是个预测值。涉及预测,就得讲清楚:预测方法、预测依据、预测结果。

预测方法有很多种,需要的数据量也不同,看菜下饭就好了。没理由领导随口问一下,你大喝一声:“呆!给我定住,三个月后我的超牛逼精准人工智能模型就好了……”所以可以简单回复,答:根据上周规律来看,明天预计1200万,比今天多20%。

当然,这种简单推测也是有前提的,见下:

一份优秀的数据分析报告,就该这么写!

问题3解读

回答问题3之前,先想一想,今天的数值,是预测值还是实际值?3点前的是实际值,3点后的是预测值。所以回答的时候要区分状态,答:截止下午3点,实际值是700万,按趋势推算,预计1400万。

初级报告的场景在办公室里很常见,常常是领导或业务部门随口要个数。这时候没有分类维度,只是单一指标,因此只要区分清楚时间状态,就能解答好。

02 中级报告

一份优秀的数据分析报告,就该这么写!

请看上图作答:

1、上个月业绩情况如何?

2、为什么第三周业绩较前两周下跌了?

问题1解读

回答问题1前,先思考:

● 这里有几个指标?

● 这里有几个维度?

● 第一问有几个问题?

这里只有一个指标:业绩,但是有3个分类维度:周、日、产品。很多新人会脱口而出:两个分类维度,时间和产品。请注意,时间是又分成周和日的,不区分清楚,后边回答就很混乱。因为这个指标很明显有周循环趋势,因此周这个维度是不能省略的。

这里显然不止一个问题。因为有了分类维度,所以有了整体和部分的区别。我们不能像初级汇报时候那样丢一个“总业绩是XXX”交差。

遇到整体和部分,大家记得这个顺序:整体-局部-个案的顺序。在解释局部的时候,如果有多个分类维度,一般说完一个再说另一个。比如眼前这个例子,可以这么说:

一份优秀的数据分析报告,就该这么写!

问题2解读

回答问题2前,先思考:

我要答的是一个数字,还是一件事?

问题2问的是原因。注意,原因指的是一个具体影响业绩的问题,不是数字本身。很多新人在这里会犯错误,直接回答个:“下跌是因为周二、周三、周四业绩很少呀”。

这么回答等于废话。要找到数字背后的问题才行。这里往往需要做一些深入的调查研究,比如当时天气如何,发生了什么事,业务做了什么控制一类。仅依靠一条数据肯定回答不了。

当然,分析出原因需要具体分析方法,这里可以参考陈老师之前的文章(数据归因模型,该如何搭建?),但作为报告,不管中间方法有多少,最后汇报的结果得是清晰的。“因为XX原因,导致该问题。”

在我们收集过真实原因以后,我们可以做答了。注意,作为数据分析报告,单纯说:“因为第三周下雨了”是难以服众的,需要对问题原因做量化考核,具体指出每个影响因素的大小,才能服众。

类似的,如果是数据错误,要指出正确的数据是什么。如果是业务有控制举措,要指出控制举措的开始,结束时间。常见的情形如下,大家可以参考:

一份优秀的数据分析报告,就该这么写!

03 高级报告

我们常说:在数据分析领域,没有高级的方法,只有高难度的问题。如果所有的问题,都能像初级、中级汇报那样清晰明了,自然解答也是清晰明了。

但,实际工作是:问题本身含糊不清,南辕北辙,莫名其妙。这就一下把报告的难度从初级提到高级了。比如下边这些问题:

1、为什么这个月业绩很差?

2、我们的产品体验有什么问题?

3、为什么我的领导会听到顾客不满意的抱怨

新人特别容易在这里栽跟头!这些问题都是看似清晰,实则一塌糊涂。和中级报告的最大区别是:中级报告是基于数据谈问题,而以上根本连基础的事实、数据都没有。

这种情况下要牢记:先问是不是,再问为什么。因为:脱离概率谈个案、脱离整体谈细节、脱离数据谈现状、脱离标准谈判断,统统都是耍流氓!

我们做数据分析,就是要用理性对抗感性,用逻辑性对抗情绪化,这些感觉、情绪、冲动都是我们的大敌,要坚决消灭!

问题1解读

回答问题1,要先摆事实,再树标准,最后再分析。

可以回答:

1、这个月业绩数值是XXX

2、判断好和差的标准是(上月、去年同月、KPI指标……)

3、和标准对比,差的程度是(不存在,轻,中,重)

4、这个(轻,中,重)级别的差,是因为……

5、如果问题不存在,干脆就不答了

问题2解读

回答问题2,要先明确数据指标,再树标准,再分析。

1、用户体验的考核指标是XXX

2、这些指标好/坏的标准是XXX

3、和标准对比,有问题的地方是XXX

4、问题的程度是(不存在,轻,中,重)

5、这个(轻,中,重)级别的问题,是因为……

6、如果问题不存在,干脆就不答了

问题3解读

回答问题3,套路也是一样的。只不过问题3更不靠谱。面对问题3,先落实:

1、我的领导是谁

2、我的领导在什么时间、地点、以什么方式

3、听到了哪一个用户,关于什么问题的抱怨

落实到具体的问题,先看看是真的有这个事,还是主观臆断,还是道听途说,还是空穴来风,还是无风起浪,之后再做分析。

04 小结

我们常说:高质量的问题带来高质量的答案。针对我问你答类报告,最大的问问往往是问题本身不清楚,相互混合,真假难辨,导致报告怎么做都很别扭。

而大家回味下,不管是工作中还是生活中,我们脱口而出的问题往往都是很含糊、很随意的。所以要坚决清理好问题,后续报告都好做了。



Tags:数据分析   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
自媒体运营 运营媒体数据分析怎么写
数据分析之旅自媒体运营工作充满挑战,但也令人陶醉。在此,我愿意与您分享我在该领域的八段独特体验及感悟。1.初入行业的激动与迷茫初识数据分析及自媒体运营领域,我心潮澎湃,对...【详细内容】
2024-01-26  Search: 数据分析  点击:(41)  评论:(0)  加入收藏
抖音万粉达人,是怎么做数据分析的?
在运营抖音账号的过程中,我们需要建立起对于抖音账号、短视频、直播等数据整体的认知,才能够对照实际数据去科学调整阶段性的运营目标,实现持续变现。那么知识达人该如何对抖音...【详细内容】
2024-01-15  Search: 数据分析  点击:(56)  评论:(0)  加入收藏
使用Python进行数据分析,需要哪些步骤?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特...【详细内容】
2024-01-15  Search: 数据分析  点击:(162)  评论:(0)  加入收藏
网站优化数据你分析过吗?做SEO优化离不开数据分析
作为一名网站管理员,你是否曾经感到困惑,为什么你的网站在搜索引擎中的排名总是不如人意?为什么你的网站流量总是无法突破某个瓶颈?其实,这些问题很可能是因为你忽略了网站优化数...【详细内容】
2024-01-01  Search: 数据分析  点击:(59)  评论:(0)  加入收藏
大数据如何实时拯救生命:车联网的数据分析有助预防交通事故
译者 | 李睿审校 | 重楼车联网(IoV)是汽车行业与物联网相结合的产物。预计车联网数据规模将越来越大,尤其是当电动汽车成为汽车市场新的增长引擎。问题是:用户的数据平台准备...【详细内容】
2023-12-19  Search: 数据分析  点击:(41)  评论:(0)  加入收藏
在Linux系统中实现容器化的大规模数据分析平台:Hadoop和Spark
在Linux系统中实现容器化的大规模数据分析平台,我们可以利用Hadoop和Spark这两个强大的开源工具。Hadoop是一个分布式计算框架,适用于处理大规模数据集。它提供了分布式文件系...【详细内容】
2023-12-15  Search: 数据分析  点击:(154)  评论:(0)  加入收藏
数据库优化:提升网站SEO数据分析能力的关键
摘要:在当今数字化时代,网站的SEO(搜索引擎优化)数据分析能力对于吸引流量和提升用户体验至关重要。而数据库优化作为一项关键的技术手段,能够显著提升网站的数据处理效率和分析...【详细内容】
2023-12-13  Search: 数据分析  点击:(120)  评论:(0)  加入收藏
高级数据分析师必备的八大能力
到底高级的数据分析师需要啥能力?这是很多人心中的疑惑。网上流行的都是Excel,SQL,Python,都是数据分析从0到1,那到底从1到100该弄些啥?陈老师给大家准备了一个《数据分析年底盘点...【详细内容】
2023-11-29  Search: 数据分析  点击:(64)  评论:(0)  加入收藏
Python:打造可视化数据分析应用的实战指南!
随着数据科学和人工智能的快速发展,数据分析变得越来越重要。在数据分析的过程中,可视化是一个非常关键的环节。它可以帮助我们更好地理解数据、发现规律和趋势。Python作为一...【详细内容】
2023-11-24  Search: 数据分析  点击:(228)  评论:(0)  加入收藏
聚类算法在大规模数据分析中的效果评估
在大规模数据分析中,聚类算法是一种常用的数据挖掘技术,用于将数据集划分为具有相似特征的群组。然而,对于大规模数据集,评估聚类算法的效果变得尤为重要。本文将探讨聚类算法在...【详细内容】
2023-11-21  Search: 数据分析  点击:(268)  评论:(0)  加入收藏
▌简易百科推荐
大数据杀熟何时告别“人人喊打却无可奈何”?
2月7日郑州飞往珠海的航班,不同手机、不同账号搜索该航班显示出不同价格。图源网络有网友近日分享在某平台的购票经历,引发社会广泛关注——用3个账号买同一航班同...【详细内容】
2024-01-30    中国青年网  Tags:大数据杀熟   点击:(32)  评论:(0)  加入收藏
简易百科:到底什么是大数据?
随着互联网的快速发展,大数据已经成为了当今社会最热门的话题之一。那么,到底什么是大数据呢?首先,我们需要明确大数据的定义。大数据是指数据量极大、类型繁多、处理难度高的数...【详细内容】
2024-01-30    简易百科  Tags:大数据   点击:(40)  评论:(0)  加入收藏
数据采集新篇章:AI与大模型的融合应用
开篇在AIGC(人工智能与通用计算)应用中,大型语言模型(LLM)占据着举足轻重的地位。这些模型,如GPT和BERT系列,通过处理和分析庞大的数据集,已经极大地推动了自然语言理解和生成的边界...【详细内容】
2024-01-17  崔皓  51CTO  Tags:数据采集   点击:(50)  评论:(0)  加入收藏
挑战 Spark 和 Flink?大数据技术栈的突围和战争
十年的轮回,正如大数据的发展一般,它既是一个轮回的结束,也是崭新的起点。大数据在过去的二十年中蓬勃发展,从无到有,崛起为最具爆炸性的技术领域之一,逐渐演变成为每个企业不可或...【详细内容】
2024-01-17  InfoQ    Tags:大数据   点击:(40)  评论:(0)  加入收藏
分布式存储系统在大数据处理中扮演着怎样的角色?
如果存储节点本身可以定制,则通常会让其支持部分计算能力,以利用数据的亲和性,将部分计算下推到相关的存储节点上。如果存储是云上的 S3 等对象存储,无法定制,则通常会将数据在计...【详细内容】
2023-12-19  木鸟杂记  微信公众号  Tags:大数据   点击:(48)  评论:(0)  加入收藏
大数据如何实时拯救生命:车联网的数据分析有助预防交通事故
译者 | 李睿审校 | 重楼车联网(IoV)是汽车行业与物联网相结合的产物。预计车联网数据规模将越来越大,尤其是当电动汽车成为汽车市场新的增长引擎。问题是:用户的数据平台准备...【详细内容】
2023-12-19    51CTO  Tags:大数据   点击:(41)  评论:(0)  加入收藏
利用生成对抗网络进行匿名化数据处理
在互联网时代,数据日益成为人们的生产资料。然而,在某些情况下,我们需要分享数据,但又需要保护个人隐私。这时,匿名化技术就显得尤为重要。本文将介绍利用生成对抗网络进行匿名化...【详细内容】
2023-12-18  技巧达人小影    Tags:数据处理   点击:(57)  评论:(0)  加入收藏
盘点那些常见的数据中心类型,你知道几个?
在数字化潮流的浪潮下,数据中心如同企业的神经系统,关系到业务的稳健运转。而在这个巨大的网络中,各种数据中心类型如雨后春笋般崭露头角。从企业级的个性至云数据中心的虚拟化...【详细内容】
2023-12-07  数据中心之家  微信公众号  Tags:数据中心   点击:(65)  评论:(0)  加入收藏
数据中心的七个关键特征
随着信息技术的不断演进,数据中心的可靠性、可扩展性、高效性、安全性、灵活性、管理性和可持续性成为业界探讨的焦点。下面让我们一同深入剖析这些关键特征,了解它们是如何影...【详细内容】
2023-12-06  数据中心之家  微信公众号  Tags:数据   点击:(63)  评论:(0)  加入收藏
什么是数据解析?将数据转化为更好的决策
什么是数据解析?数据解析是一门专注于从数据中获取洞察力的学科。它包含数据分析(data analysis)和管理的流程、工具和技术,包括数据的收集、组织和存储。数据解析的主要目的是...【详细内容】
2023-12-06  计算机世界    Tags:数据解析   点击:(62)  评论:(0)  加入收藏
站内最新
站内热门
站内头条