本次通过猫眼电影,对春节贺岁大片【满江红】进行数据分析。而本次我们通过动态接口形式获取评论信息,静态html解析需要额外的字体解析,网上的教程也已经很全了,有兴趣的小伙伴们也可以多多冲浪或和本人探讨哈!
满江红影图
1. 目标站点:猫眼H5
接口列表
2. 通过滑动查看评论信息,或点击评论进入评论子页面滑动,即可抓取到相关接口(浏览器F12工具中只能抓取到子评论接口,如果要整个评论的需要抓包工具配合或使用手机抓包)
接口详情
3. 评论接口(已加密处理)
aHR0cHM6Ly9tLm1hb3lhbi5jb20vYXBvbGxvL2Fwb2xsb2FwaS9tbWRiL3JlcGxpZXMvY29tbWVudC8xMTY3MTI5MDg5Lmpzb24/X3ZfPXllcyZvZmZzZXQ9NDA=
{
"cmts": [
{
"Approve": 0,
"assistAwardInfo": {
"avatar": "",
"celebrityId": 0,
"celebrityName": "",
"rank": 0,
"title": ""
},
"avatarurl": "https://img.meituan.NET/maoyanuser/e6f7600fa2980a929accb602fde5abaa2776.jpg",
"channelId": 70001,
"content": "在电影院看真的很有氛围!背景音乐也很加分",
"deleted": false,
"id": 1171602285,
"ipLocName": "福建",
"nickName": "腿小菇",
"time": "2023-02-27 10:24",
"userId": 1322748722,
"userLevel": 3,
"vipInfo": "",
"vipType": 0
}
],
"ocm": {
"approve": 8657,
"approved": false,
"assistAwardInfo": {
"avatar": "",
"celebrityId": 0,
"celebrityName": "",
"rank": 0,
"title": ""
},
"authInfo": "",
"avatarurl": "https://img.meituan.net/avatar/66fb6e3ef190201864c732a03b5d9be924014.jpg",
"content": "刚看完满江红,真的好看,这是我看过最值的一部电影,反转反转再反转,真的是永远想不到下一步是什么,而且还很搞笑,搞笑又宏伟,真的描述不出来这个电影的好,都给我去看!满江红!入股不亏!!!!",
"id": 1167129089,
"ipLocName": "辽宁",
"isMajor": false,
"juryLevel": 0,
"majorType": 0,
"mvid": 1462626,
"nick": "Gpc126688235",
"nickName": "Gpc126688235",
"oppose": 0,
"pro": false,
"reply": 680,
"score": 5,
"spoiler": 0,
"supportComment": true,
"supportLike": true,
"sureViewed": 1,
"tagList": {
"fixed": [
{
"id": 1,
"name": "购票好评"
},
{
"id": 4,
"name": "购票"
},
{
"id": 6,
"name": "优质评价"
}
]
},
"time": "2023-01-22 12:19",
"userId": 3164097169,
"userLevel": 2,
"videoDuration": 0,
"vipInfo": "",
"vipType": 0
},
"total": 60
}
2. 完整comment接口响应示例
{
"data": {
"hotIds": [
1167280609,
1167187803
],
"total": 16521,
"comments": [
{
"avatarUrl": "https://img.meituan.net/maoyanuser/80cdf9a184d40eb9ecc0e5d170f3e45d11928.png",
"buyTicket": false,
"channelId": 3,
"content": "还行吧,没有看开心 ",
"delete": false,
"follow": false,
"gender": 1,
"id": 1171756165,
"imageUrls": [],
"ipLocName": "山东",
"likedByCurrentUser": false,
"major": false,
"movie": {
"id": 0,
"sc": 0
},
"movieId": 1462626,
"nick": "淘嘉豪",
"replyCount": 0,
"score": 9,
"showApprove": false,
"showVote": false,
"spoiler": false,
"startTime": "1677923460000",
"tagList": [
{
"id": 1,
"name": "购票好评"
},
{
"id": 4,
"name": "购票"
}
],
"time": 1677923460000,
"ugcType": 11,
"upCount": 0,
"userId": 71317227,
"userLevel": 2,
"vipType": 0
},
],
"t2total": 0,
"myComment": {}
},
"paging": {},
"ts": 1677956823197
}
def get_film_data(offset = 0, filename="film"):
url = f'aHR0cHM6Ly9tLm1hb3lhbi5jb20vYXBvbGxvL2Fwb2xsb2FwaS9tbWRiL3JlcGxpZXMvY29tbWVudC8xMTY3MTI5MDg5Lmpzb24/X3ZfPXllcyZvZmZzZXQ9NDA='
headers = {
'User-Agent': 'Mozilla/5.0 (iphone; CPU iPhone OS 11_0 like mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1'
}
cookies = {
'uuid_n_v':'v1',
'iuuid':'942C12B0DF4311E9ADA9C1C3B540BA45F066B2B3028841B8A0BC3544E4C0AD17',
'ci':'1%2C%E5%8C%97%E4%BA%AC',
'_lxsdk_cuid':'16d6c9b401ec8-0c6c86354bd8a9-5b123211-100200-16d6c9b401ec8',
'webp':'true',
'_lxsdk':'942C12B0DF4311E9ADA9C1C3B540BA45F066B2B3028841B8A0BC3544E4C0AD17'
}
# 开始页面请求,返回响应内容
response = requests.get(url,headers=headers,cookies=cookies).json()
# 总评论数
total = response['total']
print(total)
# 评论信息列表
cmts = response['cmts']
pprint(cmts)
for comment in cmts:
data = []
# 评论id
# id = comment['id']
# 评论内容
content = comment['content']
# 用户昵称
nickName = comment['nickName']
# 用户评分
score = comment['score']
# 评论时间
# startTime = comment['time']
# 用户id
userId = comment['userId']
# 用户等级
userLevel = comment['userLevel']
# 用户性别
gender = comment.get('gender',None)
data['nickName '] = nickName
data['gender'] = gender
data['score'] = score
data['content'] = content
data['userId '] = userId
data['userLevel'] = userLevel
save_data_csv(data,filename)
return total
2. 数据存储(这里为以csv演示)
def save_data_csv(data, file_name):
with open(file_name,'a',encoding='utf-8-sig',newline='')as fp:
# 创建写对象
writer = csv.writer(fp)
title = ['nickName ','gender','score','content','userId ','userLevel']
# 解决循环存储,表头重复问题
with open(file_name,'r',encoding='utf-8-sig',newline='')as fp:
# 创建读对象
reader = csv.reader(fp)
if not [row for row in reader]:
writer.writerow(title)
writer.writerow([data[i] for i in title])
else:
writer.writerow([data[i] for i in title])
print('*'*10+'保存完毕'+'*'*10)
影评结果
def wordcloud_analysis(file_name):
df = pd.read_csv(file_name, encoding='utf-8')
content = df['content'].to_string()
# 开始分词 使用jieba进行精确分词获取词语列表
words = jieba.lcut(content)
# 使用空格拼接获得字符串
words = ' '.join(words)
# 生成词云
# 读取图片,生成图片形状
mask_pic = np.array(Image.open('1.jpg'))
words_cloud = WordCloud(
background_color='white', # 词云图片的背景颜色
width=800, height=600, # 词云图片的宽度,默认400像素;词云图片的高度,默认200像素
font_path='msyh.ttf', # 词云指定字体文件的完整路径
max_words=200, # 词云图中最大词数,默认200
max_font_size=80, # 词云图中最大的字体字号,默认None,根据高度自动调节 min_font_size# 词云图中最小的字体字号,默认4号
font_step=1, # 词云图中字号步进间隔,默认1
random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案
mask=mask_pic # 词云形状,默认None,即方形图
).generate(words) # 有jieba分词拼接的字符串生成词云
words_cloud.to_file('comment.png') # 保存词云为图片
# 使用plt显示词云
plt.imshow(words_cloud, interpolation='bilinear')
# 消除坐标轴
plt.axis('off')
plt.show()
分词
2. 观看人群性别及评分占比分析(由于取得部分数据,不代表最终现实结果,勿纠)
def gender_pie_analysis(file_name):
df = pd.read_csv(file_name, encoding='utf-8')
print(df)
#
# # 1.观看人群性别
gender = df['gender'].value_counts()
print(gender)
# 饼图,标题:观看人群性别占比
# 调用自定义饼图函数
# 创建画布和轴
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
# plt.figure()
size = 0.5
# labels = data.index
ax.pie(gender, labels=['女','男','未知'], startangle=90, autopct='%.1f%%'
, colors=sns.color_palette('husl', len(gender)),
radius=1, # 饼图半径,默认为1
pctdistance=0.75, # 控制百分比显示位置
wedgeprops=dict(width=size, edgecolor='w'), # 控制甜甜圈的宽度
textprops=dict(fontsize=10) # 控制字号及颜色
)
ax.set_title("【满江红】观看人群性别占比", fontsize=15)
# plt.title(title)
plt.show()
性别占比
评分占比
3. 用户等级分析
def user_level_bar_analysis(file_name):
df = pd.read_csv(file_name, encoding='utf-8')
print(df)
userLevel = df['userLevel'].value_counts().sort_index()
print(userLevel)
x = userLevel.index
y = userLevel
fig, ax = plt.subplots()
plt.bar(x, y, color='#DE85B5')
# 柱状图标题
plt.title('评论用户等级数量分布柱状图')
plt.grid(True, axis='y', alpha=1)
for i, j in zip(x, y):
plt.text(i, j, '%d' % j, horizontalalignment='center', )
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.show()
等级数量分布
该篇文章只是从评分角度去做的数据分析,其实还可以从影视类型、年度电影Top、票房等角度进一步做数据分析。
该篇文章来自本人知乎号:梓羽Python/ target=_blank class=infotextkey>Python
文章链接:
https://zhuanlan.zhihu.com/p/611295606