您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python 实现栈的几种方式及其优劣

时间:2023-05-08 14:26:56  来源:宇宙之一粟  作者:
本文介绍了栈这一数据结构,并介绍了在现实生活中的程序中如何使用它的情况。在文章的中,介绍了 Python/ target=_blank class=infotextkey>Python 中实现栈的三种不同方式,知道了 对于非多线程程序是一个更好的选择,如果你要在多线程编程环境中使用栈的话,可以使用 。

1 栈的概念

栈由一系列对象对象组织的一个集合,这些对象的增加和删除操作都遵循一个“后进先出”(Last In First Out,LIFO)的原则。

在任何时刻只能向栈中插入一个对象,但只能取得或者删除只能在栈顶进行。比如由书构成的栈,唯一露出封面的书就是顶部的那本,为了拿到其他的书,只能移除压在上面的书,如图:

图片

栈的实际应用

实际上很多应用程序都会用到栈,比如:

  • 网络浏览器将最近浏览的网址存放在一个栈中。每当用户访问者访问一个新网站时,这个新网站的网址就被压入栈顶。这样,每当我们在浏览器单击"后退"按钮时(或者按键盘快捷键  ,大部分撤销快捷键),就可以弹出当前最近一次访问的网址,以回到其先前访问的浏览状态。CTRL+Z
  • 文本编辑器通常会提供一个"撤销"机制以取消最近的编辑操作并返回到先前状态。这个撤销操作也是通过将文本的变化状态保存在一个栈中得以实现。
  • 一些高级语言的内存管理,JVM 的栈、Python 栈还用于内存管理、嵌套语言特性的运行时环境等
  • 回溯(玩游戏,寻找路径,穷举搜索)
  • 在算法中使用,如汉诺塔、树形遍历、直方图问题,也用于图算法,如拓扑排序

语法处理:

  • 参数和局部变量的空间是用堆栈在内部创建的。编译器对大括号匹配的语法检查对递归的支持在编译器中像后缀或前缀一样的表达式

2 栈的抽象数据类型

任何数据结构都离不开数据的保存和获得方式,如前所述,栈是元素的有序集合,添加和操作与移除都发生在其顶端(栈顶),那么它的抽象数据类型包括:

  • Stack():创建一个空栈,它不需要参数,且会返回一个空栈
  • push(e):将一个元素 e 添加到栈 S 的栈顶,它需要一个参数 e,且无返回值
  • pop(): 将栈顶端的元素移除,它不需要参数,但会返回顶端的元素,并且修改栈的内容
  • top(): 返回栈顶端的元素,但是并不移除栈顶元素;若栈为空,这个操作会操作
  • is_empty(): 如果栈中不包含任何元素,则返回一个布尔值True
  • size():返回栈中元素的数据。它不需要参数,且会返回一个整数。在 Python 中,可以用 这个特殊方法实现。__len__

图片

Python 栈的大小可能是固定的,也可能有一个动态的实现,即允许大小变化。在大小固定栈的情况下,试图向已经满的栈添加一个元素会导致栈溢出异常。同样,试图从一个已经是空的栈中移除一个元素,进行  操作这种情况被称为下溢。pop()

3 用 Python 的列表实现栈

在学习 Python 的时候,一定学过 Python 列表 , 它能通过一些内置的方式实现栈的功能:list

  • 通过  方法用于添加一个元素到列表尾部,这种方式就能模拟  操作Appendpush()
  • 通过  方法用于模拟出栈操作pop()
  • 通过  模拟 操作L[-1]top()
  • 通过判断  模拟  操作len(L)==0isEmpty()
  • 通过  函数实现  函数len()size()

图片

代码如下:

class ArrayStack:
    """ 通过 Python 列表实现 LIFO 栈"""

    def __init__(self):
        self._data = []

    def size(self):
        """ return the number of elements in the stack"""
        return len(self._data)

    def is_empty(self):
        """ return True if the stack is empty"""
        return len(self._data) == 0

    def push(self, e):
        """ add element e to the top of the stack"""
        self._data.append(e)
    
    def pop(self):
        """ remove and return the element from the top of the stack
        """
        if self.is_empty():
            rAIse Exception('Stack is empty')
        return self._data.pop()

    def top(self):
        """return the top of the stack

        Raise Empty exception if the stack is empty
        """
        if self.is_empty():
            raise Exception('Stack is empty')
        return self._data[-1]  # the last item in the list


arrayStack = ArrayStack()
arrayStack.push("Python")
arrayStack.push("Learning")
arrayStack.push("Hello")

print("Stack top element: ", arrayStack.top())
print("Stack length: ", arrayStack.size())
print("Stack popped item: %s" % arrayStack.pop())
print("Stack is empty?", arrayStack.is_empty())

arrayStack.pop()
arrayStack.pop()
print("Stack is empty?", arrayStack.is_empty())
# arrayStack.pop()

运行该程序,结果:

Stack top element:  Hello
Stack length:  3
Stack popped item: Hello
Stack is empty? False
Stack is empty? True

除了将列表的队尾作为栈顶,也可以通过将列表的头部作为栈的顶端。不过在这种情况下,便无法直接使用  方法和 方法,但是可以通过  和  方法显式地访问下标为 0 的元素,即列表的第一个元素,代码如下:pop()append()pop()insert()

class ArrayStack:
    """ 通过 Python 列表实现 LIFO 栈"""

    def __init__(self):
        self._data = []

    def size(self):
        """ return the number of elements in the stack"""
        return len(self._data)

    def is_empty(self):
        """ return True if the stack is empty"""
        return len(self._data) == 0

    def push(self, e):
        """ add element e to the top of the stack"""
        self._data.insert(0, e)
    
    def pop(self):
        """ remove and return the element from the top of the stack
        """
        if self.is_empty():
            raise Exception('Stack is empty')
        return self._data.pop(0)

    def top(self):
        """return the top of the stack

        Raise Empty exception if the stack is empty
        """
        if self.is_empty():
            raise Exception('Stack is empty')
        return self._data[0]  # the last item in the list

虽然我们改变了抽象数据类型的实现,却保留了其逻辑特征,这种能力体现了抽象思想。不管,虽然两种方法都实现了栈,但两者的性能方法有差异:

  • append() 和  方法的时间复杂度都是 _**O(1)**,_常数级别操作pop()
  • 第二种实现的性能则受制于栈中的元素个数,这是因为  和  的时间复杂度都是 O(n),元素越多就越慢。insert(0)pop(0)

4 用 collections.deque 实现栈

在 Python 中, 模块有一个双端队列数据结构 deque,这个数据结构同样实现了  和  方法:collectionsappend()pop()

>>> from collections import deque
>>> myStack = deque()
>>> myStack.append('Apple')
>>> myStack.append('Banana')
>>> myStack.append('Orange')
>>> 
>>> myStack
deque(['Apple', 'Banana', 'Orange'])
>>> myStack.pop()
'Orange'
>>> myStack.pop()
'Banana'
>>>
>>> len(myStack)
1
>>> myStack[0]
'Apple'
>>> myStack.pop()
'Apple'

>>>
>>> myStack.pop()
Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    myStack.pop()
IndexError: pop from an empty deque
>>>

为什么有了 list 还需要 deque?

可能你可以看到 deque 和列表 list 对元素的操作差不多,那么为什么 Python 中有列表还增加了 deque 这一个数据结构呢?

那是因为,Python 中的列表建立在连续的内存块中,意味着列表的元素是紧挨着存储的。

图片

这对一些操作来说非常有效,比如对列表进行索引。获取  的速度很快,因为 Python 确切地知道在内存中寻找它的位置。这种内存布局也允许切片在列表上很好地工作。myList[3]

毗连的内存布局是 list 可能需要花费更多时间来  一些对象。如果连续的内存块已经满了,那么它将需要获得另一个内存块,先将整体 copy 过去,这个动作可能比一般的  操作花费更多的时间。.append().append()

图片

而双端队列  是建立在一个双链表的基础上。在一个链接列表结构中,每个条目都存储在它自己的内存块中,并有一个对列表中下一个条目的引用。deque

双链表也是如此,只是每个条目都有对列表中前一个和后一个条目的引用。这使得你可以很容易地在列表的两端添加节点。

在一个链接列表结构中添加一个新的条目,只需要设置新条目的引用指向当前堆栈的顶部,然后将堆栈的顶部指向新条目。

图片

Memory structure of a deque pushing a new element

然而,这种在栈上不断增加和删除条目的时间是有代价的。获取  的速度要比列表慢,因为 Python 需要走过列表的每个节点来获取第三个元素。myDeque[3]

幸运的是,你很少想在栈上做随机索引元素或进行列表切片操作。栈上的大多数操作都是  或 。pushpop

如果你的代码不使用线程,常数时间的  和  操作使 deque 成为实现 Python 栈的一个更好的选择。.append().pop()

5 用 queue.LifoQueue 实现栈

Python 栈在多线程程序中也很有用,我们已经学习了  和  两种方式。对于任何可以被多个线程访问的数据结构,在多线程编程中,我们不应该使用 ,因为列表不是线程安全的。deque 的  和  方法是原子性的,意味着它们不会被不同的线程干扰。listdequelist.append().pop()

因此,虽然使用 deque 可以建立一个线程安全的 Python 堆栈,但这样做会使你自己在将来被人误用,造成竞态条件。

好吧,如果你是多线程编程,你不能用  来做堆栈,你可能也不想用  来做堆栈,那么你如何为一个线程程序建立一个 Python 堆栈?listdeque

答案就在  模块中:queue.LifoQueue。还记得你是如何学习到栈是按照后进先出(LIFO)的原则运行的吗?嗯,这就是 LifoQueue 的 "Lifo "部分所代表的含义。queue

虽然 list 和 deque 的接口相似,但 LifoQueue 使用  和  来从栈中添加和删除数据。.put().get()

>>> from queue import LifoQueue
>>> stack = LifoQueue()
>>> stack.put('H')
>>> stack.put('E')
>>> stack.put('L')
>>> stack.put('L')
>>> stack.put('O')
>>> stack
<queue.LifoQueue object at 0x00000123159F7310>
>>> 
>>> stack.get()
'O'
>>> stack.get()
'L'
>>> stack.empty()
False
>>> stack.qsize()
3
>>> stack.get()
'L'
>>> stack.get()
'E'
>>> stack.qsize()
1
>>> stack.get()
'H'
>>> stack.get_nowait()
Traceback (most recent call last):
  File "<pyshell#31>", line 1, in <module>
    stack.get_nowait()
_queue.Empty
>>> 

>>> stack.put('Apple')
>>> stack.get_nowait()
'Apple'

与 deque 不同,LifoQueue 被设计为完全线程安全的。它的所有方法都可以在线程环境中安全使用。它还为其操作添加了可选的超时功能,这在线程程序中经常是一个必须的功能。

然而,这种完全的线程安全是有代价的。为了实现这种线程安全,LifoQueue 必须在每个操作上做一些额外的工作,这意味着它将花费更长的时间。

通常情况下,这种轻微的减速对你的整体程序速度并不重要,但如果你已经测量了你的性能,并发现你的堆栈操作是瓶颈,那么小心地切换到 deque 可能是值得做的。

6 选择哪一种实现作为栈

一般来说,如果你不使用多线程,你应该使用 。如果你使用多线程,那么你应该使用 ,除非你已经测量了你的性能,发现  和  的速度的小幅提升会带来足够的差异,以保证维护风险。dequeLifoQueuepushpop

你可以对列表可能很熟悉,但需要谨慎使用它,因为它有可能存在内存重新分配的问题。和  的接口是相同的,而且  没有线程不安全问题。dequelistdeque

7 总结

本文介绍了栈这一数据结构,并介绍了在现实生活中的程序中如何使用它的情况。在文章的中,介绍了 Python 中实现栈的三种不同方式,知道了  对于非多线程程序是一个更好的选择,如果你要在多线程编程环境中使用栈的话,可以使用 。



Tags:Python   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Search: Python  点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Search: Python  点击:(17)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Search: Python  点击:(33)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  Search: Python  点击:(34)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  Search: Python  点击:(35)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Search: Python  点击:(87)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  Search: Python  点击:(88)  评论:(0)  加入收藏
大语言模型插件功能在携程的Python实践
作者简介成学,携程高级安全研发工程师,关注Python/Golang后端开发、大语言模型等领域。一、背景2023年初,科技圈最火爆的话题莫过于大语言模型了,它是一种全新的聊天机器人模型,...【详细内容】
2024-01-26  Search: Python  点击:(74)  评论:(0)  加入收藏
如何使用Python、Apache Kafka和云平台构建健壮的实时数据管道
译者 | 李睿审校 | 重楼在当今竞争激烈的市场环境中,为了生存和发展,企业必须能够实时收集、处理和响应数据。无论是检测欺诈、个性化用户体验还是监控系统,现在都需要接近即时...【详细内容】
2024-01-26  Search: Python  点击:(47)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  Search: Python  点击:(59)  评论:(0)  加入收藏
▌简易百科推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(17)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(33)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(34)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(35)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(87)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  科学随想录  微信公众号  Tags:Graphlib库   点击:(88)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  大雷家吃饭    Tags:Python   点击:(59)  评论:(0)  加入收藏
使用Python进行数据分析,需要哪些步骤?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特...【详细内容】
2024-01-15  程序员不二    Tags:Python   点击:(166)  评论:(0)  加入收藏
Python语言的特点及应用场景, 同其它语言对比优势
Python语言作为一种高级编程语言,具有许多独特的特点和优势,这使得它在众多编程语言中脱颖而出。在本文中,我们将探讨Python语言的特点、应用场景以及与其他语言的对比优势。一...【详细内容】
2024-01-09    今日头条  Tags:Python语言   点击:(257)  评论:(0)  加入收藏
站内最新
站内热门
站内头条