您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python编程进阶,轻松掌握多线程和多进程

时间:2023-12-11 13:38:13  来源:微信公众号  作者:Python学研大本营

1、简介

我们将讨论如何利用Python/ target=_blank class=infotextkey>Python执行多线程和多进程任务。它们提供了在单个进程或多个进程之间执行并发操作的方法。并行和并发执行可以提高系统的速度和效率。

在讨论多线程和多进程的基础知识之后,我们还将讨论使用Python库实现它们的实际方法。

首先简要讨论并行系统的好处。

  1. 改进的性能:有了并发执行任务的能力,可以减少执行时间并提高系统的整体性能。
  2. 可扩展性:可以将一个大任务分解为多个较小的子任务,并为它们分配独立的核心或线程,让它们独立执行。这在大规模系统中非常有用。
  3. 高效的I/O操作:通过并发的帮助,CPU不必等待进程完成其I/O操作。CPU可以立即开始执行下一个进程,直到前一个进程忙于其I/O操作。
  4. 资源优化:通过分割资源,可以防止单个进程占用所有资源。这可以避免较小进程的Starvation(饥饿)问题。

Python编程进阶,轻松掌握多线程和多进程并行计算的优势

以上是需要并发或并行执行的一些常见原因。现在,回到主题,即多线程和多进程,并讨论它们的主要区别。

2、什么是多线程?

多线程是在单个进程中实现并行性的一种方法,能够执行同时进行的任务。在单个进程内可以创建多个线程,并在该进程内并行执行较小的任务。

单个进程中的线程共享一个公共内存空间,但它们的堆栈跟踪和寄存器是独立的。由于共享内存,它们的计算成本较低。

Python编程进阶,轻松掌握多线程和多进程单线程和多线程Env.

Python中的多线程主要用于执行I/O操作,即如果程序的某个部分正在执行I/O操作,则其余程序可以保持响应。然而,在Python的实现中,由于全局解释器锁(GIL)的存在,多线程无法实现真正的并行性。

简而言之,GIL是一个互斥锁,一次只允许一个线程与Python字节码交互,即使在多线程模式下,一次也只能有一个线程执行字节码。

这样做是为了在CPython中保持线程安全,但它限制了多线程的性能优势。为了解决这个问题,Python有一个单独的多进程库,我们将在之后进行讨论。

什么是守护线程?

不断在后台运行的线程称为守护线程。它们的主要工作是支持主线程或非守护线程。守护线程不会阻塞主线程的执行,甚至会在主线程执行完毕后继续运行。

在Python中,守护线程主要用作垃圾回收器。它会默认销毁所有无用的对象并释放内存,以便主线程可以正常使用和执行。

3、什么是多进程?

多进程用于执行多个进程的并行执行。它可以帮助实现真正的并行性,因为可以同时执行不同的进程,并且每个进程都拥有自己的内存空间。它使用CPU的独立核心,并且在执行进程间的数据交换时也很有帮助。

与多线程相比,多进程的计算成本更高,因为不使用共享内存空间。不过,它允许进行独立执行,并克服了全局解释器锁的限制。

Python编程进阶,轻松掌握多线程和多进程多进程环境

上图展示了一个多进程环境,在该环境中,一个主进程创建了两个独立的进程,并为它们分配了不同的工作。

4、多线程实现

现在,我们使用Python实现一个基本的多线程示例。Python有一个内置的threading模块用于多线程实现。

  1. 导入库:
import threading
import os
  1. 计算平方的函数:

这是一个用于计算数字平方的简单函数,它接受一个数字列表作为输入,并输出列表中每个数字的平方,同时输出使用的线程名称和与该线程关联的进程ID。

def calculate_squares(numbers):
    for num in numbers:
        square = num * num
        print(
            f"Square of the number {num} is {square} | Thread Name {threading.current_thread().name} | PID of the process {os.getpid()}"
        )
  1. 主函数:

本示例有一个数字列表,将其平均分成两半,并分别命名为first_half和second_half。现在,将为这些列表分配两个独立的线程t1和t2。

Thread函数创建一个新线程,该线程接受一个带有参数列表的函数作为输入。还可以为线程分配一个单独的名称。

.start()函数将开始执行这些线程,而.join()函数将阻塞主线程的执行,直到给定的线程完全执行完毕。

if __name__ == "__mAIn__":
    numbers = [1, 2, 3, 4, 5, 6, 7, 8]
    half = len(numbers) // 2
    first_half = numbers[:half]
    second_half = numbers[half:]

    t1 = threading.Thread(target=calculate_squares, name="t1", args=(first_half,))
    t2 = threading.Thread(target=calculate_squares, name="t2", args=(second_half,))

    t1.start()
    t2.start()

    t1.join()
    t2.join()

输出:

Square of the number 1 is 1 | Thread Name t1 | PID of the process 345
Square of the number 2 is 4 | Thread Name t1 | PID of the process 345
Square of the number 5 is 25 | Thread Name t2 | PID of the process 345
Square of the number 3 is 9 | Thread Name t1 | PID of the process 345
Square of the number 6 is 36 | Thread Name t2 | PID of the process 345
Square of the number 4 is 16 | Thread Name t1 | PID of the process 345
Square of the number 7 is 49 | Thread Name t2 | PID of the process 345
Square of the number 8 is 64 | Thread Name t2 | PID of the process 345

注意:上述创建的所有线程都是非守护线程。要创建守护线程,需要编写t1.setDaemon(True),将线程t1设置为守护线程。

现在来了解一下上述代码生成的输出结果。可以观察到两个线程的进程ID(即PID)保持不变,这意味着这两个线程属于同一个进程。

还可以观察到输出并非按顺序生成。第一行中可以看到是线程1生成的输出,然后在第三行是线程2生成的输出,接着在第四行,再次是线程1生成的输出。这清楚地表明这些线程是同时工作的。

并发并不意味着这两个线程并行执行,因为一次只有一个线程被执行。它不会减少执行时间,与顺序执行所需的时间相同。CPU开始执行一个线程,但在中途离开,并切换到另一个线程,过一段时间后,又回到主线程,并从上次离开的地方开始执行。

5、多进程实现

目前对多线程及其实现方式和限制已经有基本的了解。现在,是时候学习多进程的实现以及如何克服这些限制了。

在这里将沿用相同的示例,但不再创建两个独立的线程,而是创建两个独立的进程,并讨论观察结果。

  1. 导入库:
from multiprocessing import Process
import os

本例将使用multiprocessing模块来创建独立的进程。

  1. 计算平方的函数:

该函数将保持不变。只是在这里删除了有关线程信息的打印语句。

def calculate_squares(numbers):
    for num in numbers:
        square = num * num
        print(
            f"Square of the number {num} is {square} | PID of the process {os.getpid()}"
        )
  1. 主函数:

主函数有一些修改。只是创建了一个独立的进程,而不是线程。

if __name__ == "__main__":
    numbers = [1, 2, 3, 4, 5, 6, 7, 8]
    half = len(numbers) // 2
    first_half = numbers[:half]
    second_half = numbers[half:]

    p1 = Process(target=calculate_squares, args=(first_half,))
    p2 = Process(target=calculate_squares, args=(second_half,))

    p1.start()
    p2.start()

    p1.join()
    p2.join()

输出:

Square of the number 1 is 1 | PID of the process 1125
Square of the number 2 is 4 | PID of the process 1125
Square of the number 3 is 9 | PID of the process 1125
Square of the number 4 is 16 | PID of the process 1125
Square of the number 5 is 25 | PID of the process 1126
Square of the number 6 is 36 | PID of the process 1126
Square of the number 7 is 49 | PID of the process 1126
Square of the number 8 is 64 | PID of the process 1126

可以观察到,每个列表都由一个独立的进程执行。它们具有不同的进程ID。为了检查进程是否已并行执行,需要创建一个单独的环境,下面我们将讨论这一点。

计算是否使用多进程的运行时间

为了检查是否获得了真正的并行性,在这里将计算使用和不使用多进程的算法运行时间。

为此,需要一个包含超过10^6个整数的大型整数列表。可以使用random库生成一个列表。此处将使用Python的time模块来计算运行时间。下面是实现的代码,代码本身很容易理解,也可以随时查看代码注释。

from multiprocessing import Process
import os
import time
import random

def calculate_squares(numbers):
    for num in numbers:
        square = num * num

if __name__ == "__main__":
    numbers = [
        random.randrange(1, 50, 1) for i in range(10000000)
    ]  # 创建一个包含10^7个整数的随机列表。
    half = len(numbers) // 2
    first_half = numbers[:half]
    second_half = numbers[half:]

    # ----------------- 创建单进程环境 ------------------------#

    start_time = time.time()  # 开始计时(不使用多进程)

    p1 = Process(
        target=calculate_squares, args=(numbers,)
    )  # 单进程P1执行整个列表
    p1.start()
    p1.join()

    end_time = time.time()  # 结束计时(不使用多进程)
    print(f"Execution Time Without Multiprocessing: {(end_time-start_time)*10**3}ms")

    # ----------------- 创建多进程环境 ------------------------#

    start_time = time.time()  # 开始计时(使用多进程)

    p2 = Process(target=calculate_squares, args=(first_half,))
    p3 = Process(target=calculate_squares, args=(second_half,))

    p2.start()
    p3.start()

    p2.join()
    p3.join()

    end_time = time.time()  # 结束计时(使用多进程)
    print(f"Execution Time With Multiprocessing: {(end_time-start_time)*10**3}ms")

输出:

Execution Time Without Multiprocessing: 619.8039054870605ms
Execution Time With Multiprocessing: 321.70287895202637ms

可以观察到,使用多进程的时间几乎是不使用多进程时间的一半。这表明这两个进程在同一时间内并行执行,并展示了真正的并行性行为。



Tags:Python   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Search: Python  点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Search: Python  点击:(15)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Search: Python  点击:(31)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  Search: Python  点击:(32)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  Search: Python  点击:(32)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Search: Python  点击:(84)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  Search: Python  点击:(85)  评论:(0)  加入收藏
大语言模型插件功能在携程的Python实践
作者简介成学,携程高级安全研发工程师,关注Python/Golang后端开发、大语言模型等领域。一、背景2023年初,科技圈最火爆的话题莫过于大语言模型了,它是一种全新的聊天机器人模型,...【详细内容】
2024-01-26  Search: Python  点击:(73)  评论:(0)  加入收藏
如何使用Python、Apache Kafka和云平台构建健壮的实时数据管道
译者 | 李睿审校 | 重楼在当今竞争激烈的市场环境中,为了生存和发展,企业必须能够实时收集、处理和响应数据。无论是检测欺诈、个性化用户体验还是监控系统,现在都需要接近即时...【详细内容】
2024-01-26  Search: Python  点击:(46)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  Search: Python  点击:(58)  评论:(0)  加入收藏
▌简易百科推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(15)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(31)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(32)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(32)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(84)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  科学随想录  微信公众号  Tags:Graphlib库   点击:(85)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  大雷家吃饭    Tags:Python   点击:(58)  评论:(0)  加入收藏
使用Python进行数据分析,需要哪些步骤?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特...【详细内容】
2024-01-15  程序员不二    Tags:Python   点击:(161)  评论:(0)  加入收藏
Python语言的特点及应用场景, 同其它语言对比优势
Python语言作为一种高级编程语言,具有许多独特的特点和优势,这使得它在众多编程语言中脱颖而出。在本文中,我们将探讨Python语言的特点、应用场景以及与其他语言的对比优势。一...【详细内容】
2024-01-09    今日头条  Tags:Python语言   点击:(251)  评论:(0)  加入收藏
站内最新
站内热门
站内头条