您当前的位置:首页 > 电脑百科 > 数据库 > MYSQL

MySQL运行时的可观测性

时间:2023-08-21 12:40:24  来源:微信公众号  作者:GreatSQL社区


1. 说在前面的话

MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创建临时表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,扑灭潜在隐患。

从MySQL 5.7版本开始,performance_schema就默认启用了,并且还增加了sys schema,到了8.0版本又进一步得到增强提升,在SQL运行时就能观察到很多有用的信息,实现一定程度的可观测性。

下面举例说明如何进行观测,以及主要观测哪些指标。

2. 安装employees测试库

安装MySQL官方提供的employees测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始安装:

$ mysql -f < employees.sql;

INFO
CREATING DATABASE STRUCTURE
INFO
storage engine: InnoDB
INFO
LOADING departments
INFO
LOADING employees
INFO
LOADING dept_emp
INFO
LOADING dept_manager
INFO
LOADING titles
INFO
LOADING salaries
data_load_time_diff
00:00:37

MySQL还提供了相应的使用文档:https://dev.mysql.com/doc/employee/en/

本次测试采用GreatSQL 8.0.32-24版本,且运行在MGR环境中:

greatsql> s
...
Server version:         8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c
...

greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;
+--------------------------------------+-------------+----------------+
| MEMBER_ID                            | MEMBER_ROLE | MEMBER_VERSION |
+--------------------------------------+-------------+----------------+
| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY   | 8.0.32         |
| 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR  | 8.0.32         |
| 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY     | 8.0.32         |
+--------------------------------------+-------------+----------------+

3. 观测SQL运行状态

查看当前连接/会话的连接ID、内部线程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();
+----------------+-----------+
| processlist_id | thread_id |
+----------------+-----------+
|            110 |       207 |
+----------------+-----------+

查询得到当前的连接ID=110,内部线程ID=207。

P.S,由于本文整理过程不是连续的,所以下面看到的 thread_id 值可能会有好几个,每次都不同。

3.1 观测SQL运行时的内存消耗

执行下面的SQL,查询所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:

greatsql> explAIn select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: salaries
   partitions: NULL
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 7
          ref: NULL
         rows: 2838426
     filtered: 100.00
        Extra: Using temporary; Using filesort

看到需要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还需要生成临时表,以及额外的filesort。

在正式运行该SQL之前,在另外的窗口中新建一个连接会话,执行下面的SQL先观察该连接/会话当前的内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 9
 current_allocated: 26266
 current_avg_alloc: 2918.4444
 current_max_alloc: 16464
   total_allocated: 30311

等到该SQL执行完了,再一次查询内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 13
 current_allocated: 24430
 current_avg_alloc: 1879.2308
 current_max_alloc: 16456
   total_allocated: 95719

我们注意到几个数据的变化情况,用下面表格来展示:

指标

运行前

运行后

total_allocated

30311

95719

也就是说,SQL运行时,需要分配的内存是:95719 - 30311 = 65408 字节。

3.2 观测SQL运行时的其他开销

通过观察 performance_schema.status_by_thread 表,可以知道相应连接/会话中SQL运行的一些状态指标。在SQL运行结束后,执行下面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;
...
|       207 | Created_tmp_disk_tables             | 0                        |
|       207 | Created_tmp_tables                  | 0                        |
...
|       207 | Handler_read_first                  | 1                        |
|       207 | Handler_read_key                    | 1                        |
|       207 | Handler_read_last                   | 0                        |
|       207 | Handler_read_next                   | 2844047                  |
|       207 | Handler_read_prev                   | 0                        |
|       207 | Handler_read_rnd                    | 0                        |
|       207 | Handler_read_rnd_next               | 0                        |
|       207 | Handler_rollback                    | 0                        |
|       207 | Handler_savepoint                   | 0                        |
|       207 | Handler_savepoint_rollback          | 0                        |
|       207 | Handler_update                      | 0                        |
|       207 | Handler_write                       | 0                        |
|       207 | Last_query_cost                     | 286802.914893            |
|       207 | Last_query_partial_plans            | 1                        |
...
|       207 | Select_full_join                    | 0                        |
|       207 | Select_full_range_join              | 0                        |
|       207 | Select_range                        | 0                        |
|       207 | Select_range_check                  | 0                        |
|       207 | Select_scan                         | 1                        |
|       207 | Slow_launch_threads                 | 0                        |
|       207 | Slow_queries                        | 1                        |
|       207 | Sort_merge_passes                   | 0                        |
|       207 | Sort_range                          | 0                        |
|       207 | Sort_rows                           | 1                       |
|       207 | Sort_scan                           | 1                        |
...

上面我们只罗列了部分比较重要的状态指标。从这个结果也可以佐证slow query log中的结果,确实没创建临时表。

作为参照,查看这条SQL对应的slow query log记录:

# Query_time: 0.585593  Lock_time: 0.000002 Rows_sent: 10  Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0
# Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0
# InnoDB_trx_id: 0
# Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No
# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 4281
use employees;
SET timestamp=1688609161;
select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

可以看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等几个指标的数值是一样的。

还可以查看该SQL运行时的I/O latency情况,SQL运行前后两次查询对比:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     7 | 75.39 us      | 5.84 us     | 10.77 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

...

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     8 | 85.29 us      | 5.84 us     | 10.66 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

可以看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 观测SQL运行进度

我们知道,运行完一条SQL后,可以利用PROFLING功能查看它各个阶段的耗时,但是在运行时如果也想查看各阶段耗时该怎么办呢?

从MySQL 5.7版本开始,可以通过 performance_schema.events_stages_% 相关表查看SQL运行过程以及各阶段耗时,需要先修改相关设置:

# 确认是否对所有主机&用户都启用
greatsql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| %    | %    | %    | NO      | NO      |
+------+------+------+---------+---------+

# 修改成对所有主机&用户都启用
greatsql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'YES', HISTORY = 'YES'
 WHERE HOST = '%' AND USER = '%';
 
# 修改 setup_instruments & setup_consumers 设置
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';
 
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

这就实时可以观测SQL运行过程中的状态了。

在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID:

greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT        FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
| EVENT_ID | Duration | SQL_TEXT                                                                                                                      |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
|   149845 |   0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149803 |   0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149782 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149761 |   0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149740 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+

# 再根据 EVENT_ID 值去查询 events_stages_history_long
greatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration  FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;
+-----------+----------+------------------------------------------------+----------+
| thread_id | event_Id | Stage                                          | Duration |
+-----------+----------+------------------------------------------------+----------+
|        85 |   149846 | stage/sql/starting                             |   0.0000 |
|        85 |   149847 | stage/sql/Executing hook on transaction begin. |   0.0000 |
|        85 |   149848 | stage/sql/starting                             |   0.0000 |
|        85 |   149849 | stage/sql/checking permissions                 |   0.0000 |
|        85 |   149850 | stage/sql/Opening tables                       |   0.0000 |
|        85 |   149851 | stage/sql/init                                 |   0.0000 |
|        85 |   149852 | stage/sql/System lock                          |   0.0000 |
|        85 |   149854 | stage/sql/optimizing                           |   0.0000 |
|        85 |   149855 | stage/sql/statistics                           |   0.0000 |
|        85 |   149856 | stage/sql/preparing                            |   0.0000 |
|        85 |   149857 | stage/sql/Creating tmp table                   |   0.0000 |
|        85 |   149858 | stage/sql/executing                            |   0.6257 |
|        85 |   149859 | stage/sql/end                                  |   0.0000 |
|        85 |   149860 | stage/sql/query end                            |   0.0000 |
|        85 |   149861 | stage/sql/waiting for handler commit           |   0.0000 |
|        85 |   149862 | stage/sql/closing tables                       |   0.0000 |
|        85 |   149863 | stage/sql/freeing items                        |   0.0000 |
|        85 |   149864 | stage/sql/logging slow query                   |   0.0000 |
|        85 |   149865 | stage/sql/cleaning up                          |   0.0000 |
+-----------+----------+------------------------------------------------+----------+

上面就是这条SQL的运行进度展示,以及各个阶段的耗时,和PROFILING的输出一样,当我们了解一条SQL运行所需要经历的各个阶段时,从上面的输出结果中也就能估算出该SQL大概还要多久能跑完,决定是否要提前kill它。

如果想要观察DDL SQL的运行进度,可以参考这篇文章:不用MariaDB/Percona也能查看DDL的进度。

更多的观测指标、维度还有待继续挖掘,以后有机会再写。

另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。



Tags:MySQL   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
MySQL 核心模块揭秘
server 层会创建一个 SAVEPOINT 对象,用于存放 savepoint 信息。binlog 会把 binlog offset 写入 server 层为它分配的一块 8 字节的内存里。 InnoDB 会维护自己的 savepoint...【详细内容】
2024-04-03  Search: MySQL  点击:(5)  评论:(0)  加入收藏
MySQL 核心模块揭秘,你看明白了吗?
为了提升分配 undo 段的效率,事务提交过程中,InnoDB 会缓存一些 undo 段。只要同时满足两个条件,insert undo 段或 update undo 段就能被缓存。1. 关于缓存 undo 段为了提升分...【详细内容】
2024-03-27  Search: MySQL  点击:(10)  评论:(0)  加入收藏
MySQL:BUG导致DDL语句无谓的索引重建
对于5.7.23之前的版本在评估类似DDL操作的时候需要谨慎,可能评估为瞬间操作,但是实际上线的时候跑了很久,这个就容易导致超过维护窗口,甚至更大的故障。一、问题模拟使用5.7.22...【详细内容】
2024-03-26  Search: MySQL  点击:(9)  评论:(0)  加入收藏
从 MySQL 到 ByteHouse,抖音精准推荐存储架构重构解读
ByteHouse是一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,可以通过增加服务器数量来提升处理能力。本文将从兴趣圈层...【详细内容】
2024-03-22  Search: MySQL  点击:(23)  评论:(0)  加入收藏
MySQL自增主键一定是连续的吗?
测试环境:MySQL版本:8.0数据库表:T (主键id,唯一索引c,普通字段d)如果你的业务设计依赖于自增主键的连续性,这个设计假设自增主键是连续的。但实际上,这样的假设是错的,因为自增主键不...【详细内容】
2024-03-10  Search: MySQL  点击:(5)  评论:(0)  加入收藏
准线上事故之MySQL优化器索引选错
1 背景最近组里来了许多新的小伙伴,大家在一起聊聊技术,有小兄弟提到了MySQL的优化器的内部策略,想起了之前在公司出现的一个线上问题,今天借着这个机会,在这里分享下过程和结论...【详细内容】
2024-03-07  Search: MySQL  点击:(26)  评论:(0)  加入收藏
MySQL数据恢复,你会吗?
今天分享一下binlog2sql,它是一款比较常用的数据恢复工具,可以通过它从MySQL binlog解析出你要的SQL,并根据不同选项,可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。主要...【详细内容】
2024-02-22  Search: MySQL  点击:(43)  评论:(0)  加入收藏
如何在MySQL中实现数据的版本管理和回滚操作?
实现数据的版本管理和回滚操作在MySQL中可以通过以下几种方式实现,包括使用事务、备份恢复、日志和版本控制工具等。下面将详细介绍这些方法。1.使用事务:MySQL支持事务操作,可...【详细内容】
2024-02-20  Search: MySQL  点击:(51)  评论:(0)  加入收藏
为什么高性能场景选用Postgres SQL 而不是 MySQL
一、 数据库简介 TLDR;1.1 MySQL MySQL声称自己是最流行的开源数据库,它属于最流行的RDBMS (Relational Database Management System,关系数据库管理系统)应用软件之一。LAMP...【详细内容】
2024-02-19  Search: MySQL  点击:(37)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  Search: MySQL  点击:(53)  评论:(0)  加入收藏
▌简易百科推荐
MySQL 核心模块揭秘
server 层会创建一个 SAVEPOINT 对象,用于存放 savepoint 信息。binlog 会把 binlog offset 写入 server 层为它分配的一块 8 字节的内存里。 InnoDB 会维护自己的 savepoint...【详细内容】
2024-04-03  爱可生开源社区    Tags:MySQL   点击:(5)  评论:(0)  加入收藏
MySQL 核心模块揭秘,你看明白了吗?
为了提升分配 undo 段的效率,事务提交过程中,InnoDB 会缓存一些 undo 段。只要同时满足两个条件,insert undo 段或 update undo 段就能被缓存。1. 关于缓存 undo 段为了提升分...【详细内容】
2024-03-27  爱可生开源社区  微信公众号  Tags:MySQL   点击:(10)  评论:(0)  加入收藏
MySQL:BUG导致DDL语句无谓的索引重建
对于5.7.23之前的版本在评估类似DDL操作的时候需要谨慎,可能评估为瞬间操作,但是实际上线的时候跑了很久,这个就容易导致超过维护窗口,甚至更大的故障。一、问题模拟使用5.7.22...【详细内容】
2024-03-26  MySQL学习  微信公众号  Tags:MySQL   点击:(9)  评论:(0)  加入收藏
从 MySQL 到 ByteHouse,抖音精准推荐存储架构重构解读
ByteHouse是一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,可以通过增加服务器数量来提升处理能力。本文将从兴趣圈层...【详细内容】
2024-03-22  字节跳动技术团队    Tags:ByteHouse   点击:(23)  评论:(0)  加入收藏
MySQL自增主键一定是连续的吗?
测试环境:MySQL版本:8.0数据库表:T (主键id,唯一索引c,普通字段d)如果你的业务设计依赖于自增主键的连续性,这个设计假设自增主键是连续的。但实际上,这样的假设是错的,因为自增主键不...【详细内容】
2024-03-10    dbaplus社群  Tags:MySQL   点击:(5)  评论:(0)  加入收藏
准线上事故之MySQL优化器索引选错
1 背景最近组里来了许多新的小伙伴,大家在一起聊聊技术,有小兄弟提到了MySQL的优化器的内部策略,想起了之前在公司出现的一个线上问题,今天借着这个机会,在这里分享下过程和结论...【详细内容】
2024-03-07  转转技术  微信公众号  Tags:MySQL   点击:(26)  评论:(0)  加入收藏
MySQL数据恢复,你会吗?
今天分享一下binlog2sql,它是一款比较常用的数据恢复工具,可以通过它从MySQL binlog解析出你要的SQL,并根据不同选项,可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。主要...【详细内容】
2024-02-22  数据库干货铺  微信公众号  Tags:MySQL   点击:(43)  评论:(0)  加入收藏
如何在MySQL中实现数据的版本管理和回滚操作?
实现数据的版本管理和回滚操作在MySQL中可以通过以下几种方式实现,包括使用事务、备份恢复、日志和版本控制工具等。下面将详细介绍这些方法。1.使用事务:MySQL支持事务操作,可...【详细内容】
2024-02-20  编程技术汇    Tags:MySQL   点击:(51)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  数据库干货铺  微信公众号  Tags:MySQL   点击:(53)  评论:(0)  加入收藏
mysql索引失效的场景
MySQL中索引失效是指数据库查询时无法有效利用索引,这可能导致查询性能显著下降。以下是一些常见的MySQL索引失效的场景:1.使用非前导列进行查询: 假设有一个复合索引 (A, B)。...【详细内容】
2024-01-15  小王爱编程  今日头条  Tags:mysql索引   点击:(82)  评论:(0)  加入收藏
站内最新
站内热门
站内头条