您当前的位置:首页 > 电脑百科 > 数据库 > 百科

一种通用的数据仓库分层方法

时间:2020-06-07 13:40:52  来源:  作者:

00 概述

数据分层是数据仓库设计中十分重要的一个环节,优秀的分层设计能够让整个数据体系更易理解和使用。而目前网络中大部分可以被检索到相关文章只是简单地提及数据分层的设计,或缺少明确而详细的说明,或缺少可落地实施的方案,或缺少具体的示例说明。

因此,本文将指出一种通用的数据仓库分层方法,具体包含如下内容:

  1. 介绍数据分层的作用
  2. 提出一种通用的数据分层设计,以及分层设计的原则
  3. 举出具体的例子说明
  4. 提出可落地的实践意见

01 数据分层?

“为什么要设计数据分层?”

这应该是数据仓库同学在设计数据分层时首先要被挑战的问题,类似的问题可能会有很多,比如说“为什么要做数据仓库?”、“为什么要做元数据管理?”、“为什么要做数据质量管理?”。当然,这里我们只聊一下为什么要做设计数据分层。

作为一名数据的规划者,我们肯定希望自己的数据能够有秩序地流转,数据的整个生命周期能够清晰明确被设计者和使用者感知到。直观来讲就是如下的左图这般层次清晰、依赖关系直观。

但是,大多数情况下,我们完成的数据体系却是依赖复杂、层级混乱的。如下的右图,在不知不觉的情况下,我们可能会做出一套表依赖结构混乱,甚至出现循环依赖的数据体系。

一种通用的数据仓库分层方法

 

因此,我们需要一套行之有效的数据组织和管理方法来让我们的数据体系更有序,这就是谈到的数据分层。数据分层并不能解决所有的数据问题,但是,数据分层却可以给我们带来如下的好处:

  1. 清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解
  2. 减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算
  3. 统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径
  4. 复杂问题简单化:将一个复杂的任务分解成多个步骤来完成,每一层解决特定的问题

02 一种通用的数据分层设计

为了满足前面提到数据分层带来的好处,我们将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层(App)。如下图所示。简单来讲,我们可以理解为:**ODS层存放的是接入的原始数据,DW层是存放我们要重点设计的数据仓库中间层数据,APP是面向业务定制的应用数据。**下面详细介绍这三层的设计。

一种通用的数据仓库分层方法

 

一、数据运营层:ODS(Operational Data Store)

“面向主题的”,数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。

一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

二、数据仓库层:DW(Data Warehouse)

数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。

1. 数据明细层:DWD(Data Warehouse Detail)

该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。

另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性,后文会举例说明。

2. 数据中间层:DWM(Data WareHouse Middle)

该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。

直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

3. 数据服务层:DWS(Data WareHouse Servce)

又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。

在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。

三、数据应用层:APP(Application)

在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

四、维表层(Dimension)

最后补充一个维表层,维表层主要包含两部分数据:

  1. 高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。
  2. 低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。

至此,我们讲完了数据分层设计中每一层的含义,这里做一个总结便于理解,如下图。

一种通用的数据仓库分层方法

 

03 举个栗子

趁热打铁,举个栗子说明一下,如下图,可以认为是一个电商网站的数据体系设计。我们暂且只关注用户访问日志这一部分数据。

  1. 在ODS层中,由于各端的开发团队不同或者各种其它问题,用户的访问日志被分成了好几张表上报到了我们的ODS层。
  2. 为了方便大家的使用,我们在DWD层做了一张用户访问行为天表,在这里,我们将PC网页、H5、小程序和原生APP访问日志汇聚到一张表里面,统一字段名,提升数据质量,这样就有了一张可供大家方便使用的明细表了。
  3. 在DWM层,我们会从DWD层中选取业务关注的核心维度来做聚合操作,比如只保留人、商品、设备和页面区域维度。类似的,我们这样做了很多个DWM的中间表
  4. 然后在DWS层,我们将一个人在整个网站中的行为数据放到一张表中,这就是我们的宽表了,有了这张表,就可以快速满足大部分的通用型业务需求了。
  5. 最后,在APP应用层,根据需求从DWS层的一张或者多张表取出数据拼接成一张应用表即可。

备注:例子只是为了简单地说明每一层的作用,并不是最合理的解决方案,大家辩证地看待即可。

一种通用的数据仓库分层方法

 

04 技术实践

既然谈到了数据分层,那不同的层次中会用到什么计算引擎和存储系统呢,本节来简单分享一下。

数据层的存储一般如下:

  1. Data Source:数据源一般是业务库和埋点,当然也会有第三方购买数据等多种数据来源方式。业务库的存储一般是MySQL 和 PostgreSql。
  2. ODS 层:ODS 的数据量一般非常大,所以大多数公司会选择存在HDFS上,即Hive或者Hbase,Hive居多。
  3. DW 层:一般和 ODS 的存储一致,但是为了满足更多的需求,也会有存放在 PG 和 ES 中的情况。
  4. APP 层:应用层的数据,一般都要求比较快的响应速度,因此一般是放在 Mysql、PG、Redis中。

计算引擎的话,可以简单参考图中所列就行。目前大数据相关的技术更新迭代比较快,本节所列仅为简单参考。

一种通用的数据仓库分层方法

 

05 思考

本文将思考和总结一下数据分层的原则是什么?为什么要这样分层?每层之间的界限又是什么?

我个人从这几个角度来理解数据分层的划分:

  1. 从对应用的支持来讲,我们希望越靠上层次,越对应用友好。比如APP层,基本是完全为应用来设计的,很易懂,DWS层的话,相对来讲就会有一点点理解成本,然后DWM和DWD层就比较难理解了,因为它的维度可能会比较多,而且一个需求可能要多张表经过很复杂的计算才能完成。
  2. 从能力范围来讲,我们希望80%需求由20%的表来支持。直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWM和DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中捞取。结合第一点来讲的话就是:80%的需求,我们都希望以对应用很友好的方式来支持,而不是直接暴露给应用方原始日志。
  3. 从数据聚合程度来讲,我们希望,越上层数据的聚合程度越高,看上面的例子即可,ODS和DWD的数据基本是原始日志的粒度,不做任何聚合操作,DWM做了轻度的聚合操作只保留了通用的维度,DWS做了更高的聚合操作,可能只保留一到两个能表征当前描述主体的维度。从这个角度来看,我们又可以理解为我们是按照数据的聚合程度来划分数据层次的。

总结

数据分层的设计,在某种程度上也需要通过数据命名来体现,本文的核心在于讲解数据分层的思想和方法。

作者: 木东居士



Tags:数据仓库   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
架构是数据仓库建设的总体规划,从整体视角描述了解决方案的高层模型,描述了各个子系统的功能以及关系,描述了数据从源系统到决策系统的数据流程。业务需求回答了要做什么,架构就...【详细内容】
2021-11-03  Tags: 数据仓库  点击:(35)  评论:(0)  加入收藏
01.什么是大数据?数据是对客观事实进行记录的一种符号,可以是数字、文字,也可以是图片、音频、视频。大数据是指无法在一定时间范围内用常规软件进行捕捉、管理和数据的数据集...【详细内容】
2021-06-25  Tags: 数据仓库  点击:(78)  评论:(0)  加入收藏
这几年的数据领域出现好多的概念,例如:人工智能、物联网、边缘计算、数据治理、数据湖、数据中台……可谓是“百花齐放”!一时间大家都在提新概念,但却不是所有人都...【详细内容】
2021-02-25  Tags: 数据仓库  点击:(152)  评论:(0)  加入收藏
UML对系统架构的定义是:系统的组织结构,包括系统分解的组成部分,它们的关联性,交互,机制和指导原则,例如对系统群就是定义各子系统的功能和职责,如贷款系统群可能分为进件申请、核...【详细内容】
2021-02-24  Tags: 数据仓库  点击:(164)  评论:(0)  加入收藏
数据仓库?真的有必要吗?我曾经和一个业务系统负责人聊起数据仓库,他感到很疑惑,“我们数据库里不是有现成的数据吗?你们数据分析师直接用就好了,为什么还要花人力物力去建设什么数...【详细内容】
2021-01-27  Tags: 数据仓库  点击:(190)  评论:(0)  加入收藏
一、Hive基础简介1、基础描述Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,是一个可以对Hadoop中的大规模存储的数据进行查询和分析存储的组件,Hive数据...【详细内容】
2021-01-05  Tags: 数据仓库  点击:(132)  评论:(0)  加入收藏
今天这篇文章,给大家讲述一下数据仓库的架构模式,作为我们一起探讨的内容。希望大家留言、评论,我们一起学习。一 说到数据仓库,那么我们先来了解一下数据仓库的基本概念。数据...【详细内容】
2020-11-13  Tags: 数据仓库  点击:(142)  评论:(0)  加入收藏
一、数据仓库体系架构公司借助的第三方数据平台,在此平台之上建设数据仓库。因为第三方平台集成了很多东西,所以省去了不少功夫。数据仓库的体系架构,无外乎就是数据源、数据采...【详细内容】
2020-10-04  Tags: 数据仓库  点击:(1002)  评论:(0)  加入收藏
关于数据仓库的概念、原理、建设方法论,网上已经有很多内容了,也有很多的经典书籍,本文更想聊聊企业数据仓库项目上的架构和组件工具问题。先来谈谈架构。企业数据仓库架构关于...【详细内容】
2020-09-30  Tags: 数据仓库  点击:(134)  评论:(0)  加入收藏
自创立之日起,酷克数据一直致力于降低企业进行大数据分析的门槛,推动数据民主化。今天,我们朝这个目标迈出了第一步:酷克数据在青云QingCloud上推出基于PostgreSQL和Greenplum D...【详细内容】
2020-08-03  Tags: 数据仓库  点击:(269)  评论:(0)  加入收藏
▌简易百科推荐
1增1.1【插入单行】insert [into] <表名> (列名) values (列值)例:insert into Strdents (姓名,性别,出生日期) values (&#39;开心朋朋&#39;,&#39;男&#39;,&#39;1980/6/15&#3...【详细内容】
2021-12-27  快乐火车9d3    Tags:SQL   点击:(2)  评论:(0)  加入收藏
最近发现还有不少做开发的小伙伴,在写存储过程的时候,在参考已有的不同的写法时,往往很迷茫, 不知道各种写法孰优孰劣,该选用哪种写法,以及各种写法的优缺点,本文以一个简单的查询...【详细内容】
2021-12-23  linux上的码农    Tags:sql   点击:(9)  评论:(0)  加入收藏
《开源精选》是我们分享Github、Gitee等开源社区中优质项目的栏目,包括技术、学习、实用与各种有趣的内容。本期推荐的HasorDB 是一个全功能数据库访问工具,提供对象映射、丰...【详细内容】
2021-12-22  GitHub精选    Tags:HasorDB   点击:(5)  评论:(0)  加入收藏
作者丨Rafal Grzegorczyk译者丨陈骏策划丨孙淑娟【51CTO.com原创稿件】您是否还在手动对数据库执行各种脚本?您是否还在浪费时间去验证数据库脚本的正确性?您是否还需要将...【详细内容】
2021-12-22    51CTO  Tags:Liquibase   点击:(4)  评论:(0)  加入收藏
场景描述:由于生产环境的表比较复杂,字段很多。这里我们做下简化,只为说明今天要聊的问题。有两张表 tab1,tab2: tab1 数据如下: tab2 数据如下: 然后给你看下,我用来统计 name=&#3...【详细内容】
2021-12-20  Bald    Tags:SQL   点击:(7)  评论:(0)  加入收藏
前言知识无底,学海无涯,知识点虽然简单,但是比较多,所以将MySQL的基础写出来,方便自己以后查找,还有就是分享给大家。一、SQL简述1.SQL的概述Structure Query Language(结构化查...【详细内容】
2021-12-16  谣言止于独立思考    Tags:SQL基础   点击:(13)  评论:(0)  加入收藏
前言作为一名测试工程师,工作中在对测试结果进行数据比对的时候,或多或少要和数据库打交道的,要和数据库打交道,那么一些常用的 SQL 查询语法必须要掌握。最近有部分做测试小伙...【详细内容】
2021-12-14  柠檬班软件测试    Tags:SQL   点击:(15)  评论:(0)  加入收藏
话说C是面向内存的编程语言。数据要能存得进去,取得出来,且要考虑效率。不管是顺序存储还是链式存储,其寻址方式总是很重要。顺序存储是连续存储。同质结构的数组通过其索引表...【详细内容】
2021-12-08  小智雅汇    Tags:数据存储   点击:(18)  评论:(0)  加入收藏
概述DBConvert Studio 是一款强大的跨数据库迁移和同步软件,可在不同数据库格式之间转换数据库结构和数据。它将成熟、稳定、久经考验的 DBConvert 和 DBSync 核心与改进的现...【详细内容】
2021-11-17  雪竹聊运维    Tags:数据库   点击:(26)  评论:(0)  加入收藏
一、前言 大家好,我是小诚,《从0到1-全面深刻理解MySQL系列》已经来到第四章,这一章节的主要从一条SQL执行的开始,由浅入深的解析SQL语句由客户端到服务器的完整执行流程,最...【详细内容】
2021-11-09  woaker    Tags:SQL   点击:(35)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条