您当前的位置:首页 > 电脑百科 > 网络技术 > 网络知识

TCP 为什么需要三次握手?

时间:2022-10-07 12:25:12  来源:网易号  作者:互联网资讯看板

TCP 协议是我们每天都在使用的一个网络通讯协议,因为绝大部分的网络连接都是建立在 TCP 协议上的,比如你此刻正在看的这篇文章是建立在 HTTP(Hypertext Transfer Protocol,超文本传送协议) 应用层协议的基础上的,而 HTTP 协议的“底层”则是建立在 TCP 的传输层协议上的。因此可以理解为,你之所以能看到本篇文章就是得益于 TCP 协议的功劳。

我们本课时讲的是,说一下 TCP 三次握手的执行流程,以及为什么需要三次握手?

典型回答

在回答这个问题之前,首先我们需要搞清楚两个概念,第一,什么是 TCP?第二,什么是 TCP 连接?只有搞明白了这两个问题,我们才能彻底搞懂为什么 TCP 需要三次握手?

什么是 TCP?

首先来说 TCP(Transmission Control Protocol,传输控制协议)是一个面向连接的、可靠的、基于字节流的传输层协议。从它的概念中我们可以看出 TCP 的三个特点:面向连接、可靠性和面向字节流


 

TCP 的特点

面向连接:是指 TCP 是面向客户端和服务器端连接的通讯协议,使用它可以将客户端和服务器端进行连接。

可靠性:是指无论网络环境多差,TCP 都可以保证信息一定能够传递到接收端。

TCP 之所以可以保证可靠性主要得益于两个方面,一个是“状态性”,另一个是“可控制性”。所谓状态性是指 TCP 会记录信息的发送状态,例如,哪些数据收到了、哪些数据没收到等状态信息都会被记录;可控制性是指 TCP 会根据状态情况控制自己的行为,比如当 TCP 意识到丢包了就会控制重发此包,这样就实现了 TCP 的可靠性。

面向字节流:是指 TCP 是以字节流的方式进行数据传输的。

RFC 793 对 TCP 连接的定义如下:

 

Connections: The reliability and flow control mechanisms described above require that TCPs initialize and mAIntain certain status information for each data stream. The combination of this information, including sockets, sequence numbers, and window sizes, is called a connection.

 

小贴士: TCP 之所以被广泛应用,首先是因为它是一个标准化的协议,TCP 的标准协议就是由 RFC 793 定义的,它已经有了 30 多年的历史,并且已经被多次更新。RFC(Request For Comments)是 IETF(Inte.NET Engineering Task Force)的正式文档。IETF 是一家制定互联网标准的组织,它制定了 Internet(互联网)的整体协议体系,凡是经过 IETF 评审认可的标准都会被发布为带编号的 RFC 的文档。

TCP 定义的大致意思是,用于保证可靠性和流控制机制的信息,包括 Socket、序列号及窗口大小被称为连接。

其中,Socket 是由 IP 地址加端口号组成的,序列号是用来解决乱序问题的,而窗口大小则是用来做流量控制的。

TCP 三次握手的执行流程

接下来我们来看 TCP 三次握手的执行流程,如下图所示:


 

关键字说明:

 

  • SYN(SYNchronize Sequence Numbers),同步序列编号;
  • ACK(Acknowledge Character),确认字符;
  • SEQ(Sequence Number),序列号。

 

TCP 的执行流程如下:

 

  • 最开始时客户端和服务端都处于 CLOSED 状态,然后服务端先主动监听某个端口,此时服务器端就变成了 LISTEN(监听)状态;
  • 然后客户端主动发起连接,发送 SYN(同步序列编号),此时客户端就变成了 SYN-SENT 状态;
  • 服务端接收到信息之后返回 SYN 和 ACK 至客户端,此时服务器端就变成了 SYN-REVD 状态;

 

客户端接收到消息之后,再发送 ACK 至服务器端,此时客户端就变成了 ESTABLISHED(已确认)状态,服务端收到 ACK 之后,也变成了 ESTABLISHED 状态,此时连接工作就执行完了。

为什么 TCP 需要三次握手?

了解了以上 TCP 的基础概念之后,我们再来看一下 TCP 为什么需要三次握手?

原因一:防止重复连接

首先来说 RFC 793 - Transmission Control Protocol 其实就指出了三次握手的主要原因,它的描述如下:

 

The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.

 

翻译为中文的意思是,三次握手的主要原因是为了防止旧的重复连接引起连接混乱问题。

比如在网络状况比较复杂或者网络状况比较差的情况下,发送方可能会连续发送多次建立连接的请求。如果 TCP 握手的次数只有两次,那么接收方只能选择接受请求或者拒绝接受请求,但它并不清楚这次的请求是正常的请求,还是由于网络环境问题而导致的过期请求,如果是过期请求的话就会造成错误的连接。

所以如果 TCP 是三次握手的话,那么客户端在接收到服务器端 SEQ+1 的消息之后,就可以判断当前的连接是否为历史连接,如果判断为历史连接的话就会发送终止报文(RST)给服务器端终止连接;如果判断当前连接不是历史连接的话就会发送指令给服务器端来建立连接。

原因二:同步初始化序列化

通过上面的概念我们知道 TCP 的一个重要特征就是可靠性,而 TCP 为了保证在不稳定的网络环境中构建一个稳定的数据连接,它就需要一个“序列号”字段来保证自己的稳定性,而这个序列号的作用就是防止数据包重复发送,以及有效的解决数据包接收时顺序颠倒的问题。

那么在建立 TCP 连接时就需要同步初始化一个序列号来保证 TCP 的稳定性,因此它需要执行以下过程:

 

  • 首先客户端发送一个携带了初始序列号的 SYN 报文给服务器端;
  • 服务端接收到消息之后会回复一个 ACK 的应答报文,表示客户端的 SYN 报文已被服务端成功接收了;
  • 而客户端收到消息之后也会发送一个 ACK 给服务端,服务器端拿到这个消息之后,我们就可以得到一个可靠的初始化序列号了。

 

而如果是两次握手的话,就无法进行序列号的确认工作了,因此也就无法得到一个可靠的序列号了,所以 TCP 连接至少需要三次握手。

以上两种原因就是 TCP 连接为什么需要三次握手的主要原因,当然 TCP 连接还可以四次握手,甚至是五次握手,也能实现 TCP 连接的稳定性,但三次握手是最节省资源的连接方式,因此 TCP 连接应该为三次握手。

考点分析

TCP 知识是计算机编程基础,也是面试中常见的面试问题,因为我们现在所使用的大部分连接都是建立在 TCP 基础上的。因此对 TCP 的掌握可以让我们更清楚地理解技术的实现过程,也能帮我们写出更加优秀的代码,以及排查一些和网络相关的问题。

和此知识点相关的面试题还有以下这些:

 

  • 什么是 UDP?
  • TCP 和 UDP 有什么区别?
知识扩展 UDP 介绍

 

UDP(User Data Protocol,用户数据报协议)是无连接的、简单的、面向数据报的传输层协议。也就是 UDP 在发送数据之前,无须建立客户端与服务端的连接,直接发送消息即可。

UDP 的协议头有 8 个字节(64 位),如下图所示:


 

其中源端口和目标端口是指记录发送方和接收方端口;UDP 包长度是指 UDP 头部加上 UDP 数据的总长度;UDP 校验和用于效验 UDP 的内容是否可靠。

UDP 常见的使用场景有:语音、视频等多媒体通信、DNS(域名转化)、TFTP 等。

TCP VS UDP

TCP 和 UDP 的区别主要体现在以下 7 个方面:

 

  • 可靠性,TCP 有“状态性”和“可控制性”可以保证消息不重复、按顺序、不丢失的发送和接收,而 UDP 则不能保证消息的可靠性;
  • 连接,TCP 是面向连接的传输层协议,传输数据前先要建立连接,而 UDP 发送数据之前无需建立连接;
  • 服务对象,TCP 服务的对象为一对一的双端应用,而 UDP 可以应用于一对一、一对多和多对多的通信场景;
  • 效率,TCP 的传输效率较低,而 UDP 的传输效率较 高;
  • 流量控制,TCP 有滑动窗口可以用来控制流量,而 UDP 则不具备流量控制的能力;
  • 报文,TCP 是面向字节流的传输层协议,而 UDP 是面向报文的传输层协议;
  • 应用场景,TCP 的应用场景是对消息准确性和顺序要求较高的场景,而 UDP 则是应用于对通信效率较高、准确性要求相对较低的场景。

 

TCP 和 UDP 的使用场景如下图所示:


 

小结

本课时我们介绍了 TCP 三个特点:面向连接、可靠性和面向字节流,其中可靠性主要是依赖它的状态记录和根据实际情况调整自身的行为方式。例如,当 TCP 意识到丢包时就会重发此包,这样就保证了通信的可靠性。

TCP 之所以需要三次握手的主要原因是为了防止在网络环境比较差的情况下不会进行无效的连接,同时三次握手可以实现 TCP 初始化序列号的确认工作,TCP 需要初始化一个序列号来保证消息的顺序。如果是两次握手则不能确认序列号是否正常,如果是四次握手的话会浪费系统的资源,因此 TCP 三次握手是最优的解决方案,所以 TCP 连接需要三次握手。

最后我们讲了 UDP 的概念,以及 UDP 和 TCP 的区别,在传输效率要求比较高且对可靠性要求不高的情况下可以使用 UDP,反之则应该使用 TCP。



Tags:TCP   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
一台服务器​最大并发 TCP 连接数多少
以一道运维面试题开局:你接触过的单机最大并发数是多少?操作系统最大文件打开数是65535,服务器又是怎么做到支持10w并发的?你认为当前正常配置的服务器物理机最大并发数可以到多...【详细内容】
2023-10-04  Search: TCP  点击:(71)  评论:(0)  加入收藏
C# 如何判断某个 TCP 端口是否被占用?
在C#中使用TcpClient或者其他通用的方式建立的Socket,该如何判断这个端口是否被占用?比如下面的代码:TcpClient tc = new TcpClient(ip,port);在C#中,可以使用 System.Net.Netwo...【详细内容】
2023-09-26  Search: TCP  点击:(54)  评论:(0)  加入收藏
使用 Nginx 作为 MySQL 的 TCP 负载均衡器
Overview随着应用程序的膨胀,我们往往需要扩展程序的基础架构。这篇文章是使用 NGINX 作为 MySQL 的 TCP 负载均衡器的实践。 使用 TCP 负载均衡器的好处: 对数据库进行负载...【详细内容】
2023-04-13  Search: TCP  点击:(190)  评论:(0)  加入收藏
Linux 的 TCP 连接数量最大不能超过 65535?
在使用 TCP/IP 协议时,会遇到一个经典的问题:TCP 连接数量最大不能超过 65535。这是因为 TCP 协议头中的端口号是 16 位的,因此最大只能表示 65535 个端口号。那么,服务器又是如...【详细内容】
2023-03-30  Search: TCP  点击:(227)  评论:(0)  加入收藏
TCP 为什么需要三次握手?
TCP 协议是我们每天都在使用的一个网络通讯协议,因为绝大部分的网络连接都是建立在 TCP 协议上的,比如你此刻正在看的这篇文章是建立在 HTTP(Hypertext Transfer Protocol,超文...【详细内容】
2022-10-07  Search: TCP  点击:(414)  评论:(0)  加入收藏
TCP 和 UDP 可以使用同一个端口吗?
大家好,我是小林。之前有读者在字节面试的时候,被问到:TCP 和 UDP 可以同时监听相同的端口吗? 关于端口的知识点,还是挺多可以讲的,比如还可以牵扯到这几个问题: 多个 TCP 服务进...【详细内容】
2022-09-24  Search: TCP  点击:(434)  评论:(0)  加入收藏
网络不通?服务丢包?看下这篇 TCP 连接状态详解及故障排查手册
我们通过了解TCP各个状态,可以排除和定位网络或系统故障时大有帮助。1、TCP状态了解TCP之前,先了解几个命令:linux查看tcp的状态命令: 1) netstat -nat 查看TCP各个状态的数量 2...【详细内容】
2022-08-03  Search: TCP  点击:(386)  评论:(0)  加入收藏
一小例子,了解 TCP 通讯流程 | Qt 示例
Hi,今天用一个小例子,陈述一下 Qt 里使用 TCP 通讯的流程。代码链接:https://doc.qt.io/qt-5/examples-network.html运行效果: Server 端运行效果: 显示 IP + 端口,然后静静地的等...【详细内容】
2022-07-25  Search: TCP  点击:(461)  评论:(0)  加入收藏
傻傻分不清的TCP keepalive和HTTP keepalive
1.TCP keepalive1.1.概念A keepalive (KA) is a message sent by one device to another to check that the link between the two is operating, or to prevent the link f...【详细内容】
2022-07-08  Search: TCP  点击:(424)  评论:(0)  加入收藏
详解什么是 TCP 粘包和拆包现象并演示 Netty 是如何解决的
概述本文介绍什么是 TCP 粘包和拆包现象,并通过 Netty 编写详细的案例来重现 TCP 粘包问题,最后再通过一个 Netty 的 demo 来解决这个问题。具体内容如下 什么是 TCP 粘包和拆...【详细内容】
2022-04-24  Search: TCP  点击:(322)  评论:(0)  加入收藏
▌简易百科推荐
学生偷看“不良网站”,手机上3个痕迹无法清除,网友:咋不早说
众所周知,中国的常规教育中,总是“谈性色变”,但在这个信息爆炸的互联网时代,即便是一些年纪很小的孩子,也能轻易接触到一些所谓的不良网站,因此这一方面的教育缺失,其实是很可怕的...【详细内容】
2024-03-28    叶姐生活指南  Tags:不良网站   点击:(11)  评论:(0)  加入收藏
什么是网络中的路由器?核心功能解释
路由器是互联网连接的核心元素,是一种允许多个设备连接到互联网,并促进将数据包转发到各自的目标地址的设备。使用动态路由技术,路由器检查数据并在各种可用路径中选择最有效的...【详细内容】
2024-03-07    千家网  Tags:路由器   点击:(31)  评论:(0)  加入收藏
过年该不该升级Wi-Fi 7路由?看完就知道
打开电商网站不难发现,从2023年第三季度到现在,Wi-Fi 7路由器新品越来越多。而且价格不再是高高在上,已经基本和Wi-Fi 6路由价格差不多了。看到这些Wi-Fi 7新品路由,不少朋友就...【详细内容】
2024-02-27    中关村在线  Tags:Wi-Fi   点击:(37)  评论:(0)  加入收藏
聊聊 Kubernetes 网络模型综合指南
这篇详细的博文探讨了 Kubernetes 网络的复杂性,提供了关于如何在容器化环境中确保高效和安全通信的见解。译自Navigating the Network: A Comprehensive Guide to Kubernete...【详细内容】
2024-02-19  云云众生s  微信公众号  Tags:Kubernetes   点击:(39)  评论:(0)  加入收藏
SSL协议是什么?关于SSL和TLS的常见问题解答
SSL(安全套接字层)及其后继者TLS(传输层安全)是用于在联网计算机之间建立经过身份验证和加密的链接的协议。尽管SSL协议在 1999年已经随着TLS 1.0的发布而被弃用,但我们仍将这些...【详细内容】
2024-02-06  IDC点评网    Tags:SSL协议   点击:(69)  评论:(0)  加入收藏
从零开始了解网络协议:TCP/IP详解
从零开始了解网络协议:TCP/IP详解 在当今数字化的时代,网络协议已经成为我们生活中不可或缺的一部分。作为互联网的基础,网络协议规定了数据如何在不同的网络设备之间传输。TC...【详细内容】
2024-02-01    简易百科  Tags:TCP/IP   点击:(59)  评论:(0)  加入收藏
BGP路由属性:互联网路由的灵活控制器
在互联网的庞大网络中,边界网关协议(BGP)是确保不同自治系统(AS)间路由信息有效交换的关键协议。然而,BGP的功能远不止于此。其核心组成部分,即BGP路由属性,赋予了BGP强大的灵活性,使...【详细内容】
2024-01-26  诺诺爱生活    Tags:互联网路由   点击:(40)  评论:(0)  加入收藏
简易百科之什么是网络延迟?
简易百科之什么是网络延迟?随着互联网的普及和发展,网络已经成为我们生活中不可或缺的一部分。然而,我们在使用网络时可能会遇到一种情况,那就是网络延迟。那么,什么是网络延迟呢...【详细内容】
2024-01-24    简易百科  Tags:网络延迟   点击:(149)  评论:(0)  加入收藏
网络延迟与网络速度有什么区别?分享具体的答案
通常,许多人抱怨网速测试。速度还是不错的,但是他们玩游戏的时候怎么会卡住,还是断开连接等等问题,这一系列问题始终困扰着大家。那么,网络延迟与网络速度有什么区别呢?请不要担心...【详细内容】
2024-01-24  萌新小郭    Tags:网络延迟   点击:(51)  评论:(0)  加入收藏
揭秘IP地址的网络威胁与攻击类型
在当今数字化时代,网络攻击已经成为网络安全的一大挑战。IP地址,作为互联网通信的基础,也成为网络威胁和攻击的焦点之一。本文将深入探讨不同类型的网络威胁和攻击,以及如何防范...【详细内容】
2024-01-22  IP数据云    Tags:IP地址   点击:(78)  评论:(0)  加入收藏
站内最新
站内热门
站内头条