您当前的位置:首页 > 手机百科 > 5G

5G是怎么实现TDD的?

时间:2019-12-10 16:29:35  来源:  作者:

首先我们先看看一些基本概念,明确下TDD和FDD的区别,以及实现TDD的必要性。

移动通信的主要参与方是基站和终端(最常用的是手机,下文将直接以手机称呼)。双方通信时,需要有个明确的收发关系。

由于基站高高在上,因此把基站发射,手机接收这条路径叫做“下行”;反过来,把手机发射,基站接收这条路径叫做“上行”。如下图中的箭头所示。

「5G百科」5G是怎么实现TDD的?

 

上下行同时工作就叫做“双工”,是移动通信必须要解决的最基础问题。那么怎么使用有限的频率来实现双工呢?业界一直有两种解决方案:频分双工(FDD:Frequency Division Duplex)和时分双工(TDD:Time Division Duplex)。

FDD的思路是,上下行使用不同的两段频谱,相当于两条车道一样,上下行在各自的频谱上并行不悖,互不干扰。

「5G百科」5G是怎么实现TDD的?

 

而TDD的思路是,我上下行使用一模一样的频谱,虽然相当于只有一条车道,但我让上下行数据在不同的时间来使用这条通道,上行发一会数据,下行再发一会,轮着来。由于上行和下行每次发送信息占用的时间非常短,人根本感觉不到断续,这样也就实现了双工。

「5G百科」5G是怎么实现TDD的?

 

在实际的应用中,由于FDD的方式简单粗暴,易于实现,性能可靠,因此在2G时代得到了大量的应用。我们熟悉的GSM和CDMA都是频分双工。

到了3G时代,由于数据业务的兴起,上下行需求不对称开始显现。大部分人上网都是以下载为主,上传的需求很小,因此下行流量往往是远大于上行流量的。

而FDD方式上下行使用了相同带宽的频谱资源,无法灵活调整,明显是对宝贵资源的浪费。并且,随着频谱资源越来越紧张,上下行成对的频谱是越来越难找了,因此FDD的弊端越来越明显。

而TDD由于上下行的占用时长可以灵活配置,比如对于下载业务,可以把下行时间设为80%,上行时间设为20%,频谱利用率因此得以提升。且TDD上下行使用同一段频谱,不用像FDD那样成对,因此可以很方便的利用零碎的频谱。

就这样,从3G时代TDD开始崭露头角,诞生了TD-SCDMA技术;在4G时代,TDD LTE已经开始挑战FDD LTE,在全球得到了广泛的应用;而到了5G时代,TDD双工方式已经成为了绝对首选。

下面我们来看看5G是怎么实现TDD的。首先回顾一下5G的帧结构,如下图所示。

「5G百科」5G是怎么实现TDD的?

 

首先,每个无线帧时长10毫秒,含10个1毫秒的子帧。每个子帧根据参数集的不同,含有不同的时隙数,子载波宽度越宽,时隙数越多(具体数值见上图),但子帧的长度都是1毫秒不变的。

每个时隙,不论时间长短,都含有14个符号,这是5G无线资源分配的最小时间单位。为了灵活使用这些符号,3GPP了定义了56种时隙格式,明确了时隙内部的符号组合方式。

「5G百科」5G是怎么实现TDD的?

 

在一个时隙中,可以有3种符号:下行符号(D),上行符号(U),以及灵活符号(F)。灵活符号既可以作为上行使用,也可以作为下行使用。

那么这些时隙格式该怎么组合使用呢?3GPP定义了TDD的帧格式,可以采用如下等式表示:

TDD帧格式 = 若干个下行时隙 + 1个灵活时隙 + 若干个上行时隙。

其中,下行时隙可以有多个,每个时隙中的14个符号全部配置为下行;上行时隙也可以有多个,每个时隙中的14个符号全部配置为上行;灵活时隙只有一个,可以灵活设置下行符号,灵活符号和上行符号的比例,只要上面那张表里有定义就行。

综上,TDD的帧结构如下图所示。

「5G百科」5G是怎么实现TDD的?

 

基于这样的定义,为了满足不同的上下行性能需求,在5G收发频段3.5GHz上,采用30KHz子载波间隔,业界有如下三种主流的帧格式。

2毫秒单周期:每个周期内2个下行时隙(D),1个上行时隙(U),1个灵活时隙(S)。

「5G百科」5G是怎么实现TDD的?

 

2.5毫秒单周期:每个周期内3个下行时隙(D),1个上行时隙(U),1个灵活时隙(S)。

「5G百科」5G是怎么实现TDD的?

 

2.5毫秒双周期:双周期是指两个周期的配置不同,一起合成一个大的循环,其中含有5个下行时隙(D),3个上行时隙(U),2个灵活时隙(S)。

「5G百科」5G是怎么实现TDD的?

 

在这三种帧格式中,对于灵活时隙,可配置为:10个下行符号 + 2个灵活符号 + 2个上行符号。其中两个灵活符号用作上下行之间转换的隔离,不用于收发信号。

把灵活时隙中的上下行符号也考虑进来计算可得,2毫秒单周期的上行资源占比约为29%,2.5毫秒单周期的上行资源占比约为23%,2.5毫秒双周期的上行资源占比约为33%。因而导致了几种帧结构在上下行性能上的差异。

由上述时隙示例可以看出,5G对TDD的实现是非常灵活的,不再像TDD那样预定义子帧配比,可以根据需求灵活配置上下行时隙数量,用于5G需求各异的应用。



Tags:5G   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
IT之家 12 月 23 日消息,百度地图今日宣布,第二代车道级导航正式上线。据介绍,百度地图第二代车道借助北斗 + 5G,在实现全程车道级导航效果的基础上,全面升级最优车道推荐、全 /...【详细内容】
2021-12-24  Tags: 5G  点击:(12)  评论:(0)  加入收藏
2021年12月6日至17日,3GPP召开RAN#94-e次会议,完成了5G-Advanced第一个版本Rel-18标准的首批项目立项。日前,3GPP RAN4首席代表、中国移动研究院无线与终端技术研究所主任研究...【详细内容】
2021-12-21  Tags: 5G  点击:(8)  评论:(0)  加入收藏
前言网盘大多数人都知道,不过NAS认识的人不多,尤其是对于普通大众,NAS的门槛还是有些偏高,不够无脑,所以不少轻NAS登场,面向的就是普通消费者,放个硬盘,手机设置一下,就可以实现照片...【详细内容】
2021-12-14  Tags: 5G  点击:(8)  评论:(0)  加入收藏
在今天上午召开的 AWS re:Invent 会议上,亚马逊宣布以预览版的形式推出“AWS Private 5G”。这项新服务皆在使部署和管理自己的私人网络变得容易,解决企业在利用 5G 方面面临...【详细内容】
2021-12-01  Tags: 5G  点击:(22)  评论:(0)  加入收藏
中国为什么要把新能源汽车列为国家战略,很大一个原因是因为在传统车领域我们已经无法超越国外车企,毕竟国外车企已经发展了100多年,而我们的汽车工业起步很晚。汽车这个东西不...【详细内容】
2021-10-25  Tags: 5G  点击:(178)  评论:(0)  加入收藏
我们平时使用的无线网络也就是WIFI会出现两个名称,一个是普通的WIFI名称,一个是在WIFI名称后面加个5G,普通的WIFI就是2.4G的,在路由设置可以看到,那2.4G与5G到底有什么区别,今天...【详细内容】
2021-10-25  Tags: 5G  点击:(176)  评论:(0)  加入收藏
鸿蒙系统是支持5g网络的,开启5g网络之后我们可以享受到更优质的网速以及上网体验。那鸿蒙系统具体该怎么启用5g教程呢?不清楚的朋友就跟着小编一起看看吧!鸿蒙系统启用5g网络教...【详细内容】
2021-10-21  Tags: 5G  点击:(290)  评论:(0)  加入收藏
边缘计算是什么?近年来,物联网设备数量呈线性增长趋势。根据艾瑞测算, 2020年,中国物联网设备的数量达74亿,预计2025年突破150亿个。同时,设备本身也变得越来越智能化,AI与互联网在...【详细内容】
2021-09-22  Tags: 5G  点击:(55)  评论:(0)  加入收藏
更新到了最新的鸿蒙,没有卡和发烫的问题,但下拉没有了5G开关,好像也不好添加,只有到设置移动数据里开关了!因为有时候手机卡壳时关了5G速度反而会快点,转换没有以前方便了! ...【详细内容】
2021-09-01  Tags: 5G  点击:(1052)  评论:(0)  加入收藏
网络切片Network Slice在5G系统中,网络将被进一步抽象为“网络切片”—Network Slice:这种连接服务是通过许多定制软件实现的功能定义。这些软件功能包括地理覆盖区域、...【详细内容】
2021-08-17  Tags: 5G  点击:(935)  评论:(0)  加入收藏
▌简易百科推荐
2021年12月6日至17日,3GPP召开RAN#94-e次会议,完成了5G-Advanced第一个版本Rel-18标准的首批项目立项。日前,3GPP RAN4首席代表、中国移动研究院无线与终端技术研究所主任研究...【详细内容】
2021-12-21    C114通信网  Tags:5G   点击:(8)  评论:(0)  加入收藏
网络切片Network Slice在5G系统中,网络将被进一步抽象为“网络切片”—Network Slice:这种连接服务是通过许多定制软件实现的功能定义。这些软件功能包括地理覆盖区域、...【详细内容】
2021-08-17  开元5G网络    Tags:5G   点击:(935)  评论:(0)  加入收藏
科研人员足不出户就能看到试验现场?操作人员远程可以精准操控工业设备?无人机和机器人替代安保人员保障安全?听起来是不是像科幻电影中的情节?但这些,都将是5G与工业互联网碰撞出...【详细内容】
2021-07-28    人民网  Tags:5G   点击:(102)  评论:(0)  加入收藏
目前,5G 技术已经开始商用,也有越来越多的朋友使用上了 5G 手机,或许有些朋友还有些疑惑,5G 是什么,与之前的 4G 有什么区别,为什么要用 5G。本文想通过自己对 5G 的了解,尝试为大...【详细内容】
2021-07-05  Mumu爱好学习    Tags:5G 技术   点击:(64)  评论:(0)  加入收藏
随着移动通信行业的迅猛发展,目前5G已经成为全球关注的超级热门话题,与2G、3G、4G相比,未来光纤通信行业5G地位不容小觑,在5G网络时代,不管什么样的5G承载方案都离不开5G通信光模...【详细内容】
2021-05-27  飞速FS    Tags:5G通信光模块   点击:(102)  评论:(0)  加入收藏
最新出版的权威期刊《电信科学》发表了题为《通信人工智能的下一个十年》的刊首文章,给人们展示了完全不同的5G通信——未来的通信网络是可以高度自治的。就像自动驾驶的汽车,通过与人工智能的深度融合,实现“三自”,即参...【详细内容】
2021-04-20  张佳星  科技日报  Tags:5G   点击:(132)  评论:(0)  加入收藏
很多人都知道5G网速快,一部超高清电影只需要几十秒就可以下载好,用测速软件跑一跑,发现5G的下载速度是4G的10倍……在惊呼5G比4G快很多的同时,我们也不能忽视5G“低...【详细内容】
2021-04-16    环球网  Tags:网络延迟   点击:(164)  评论:(0)  加入收藏
移动通信系统从第一代移动通信系统(1G)开始逐渐发展,目前已经发展到第四代移动通信系统(4G),第五代移动通信系统(5G)也已经开始标准化,预计2020年商用。  本文分别总结2G、3G、4G和...【详细内容】
2021-01-26      Tags:基站   点击:(493)  评论:(0)  加入收藏
船、卫星等一切无线通讯设备,都得靠电磁波传送信息。手机把信号码进电磁波里,发给基站,基站再通过网络发给另一部手机。信息就被读出来了。 为避免干扰和冲突,人们按频率给电磁...【详细内容】
2021-01-25      Tags:5G   点击:(208)  评论:(0)  加入收藏
随着高速通信标准“5G”的登场和远程办公的普及,全球的通信量持续增长,2020年代之内光纤(optical fiber)通信网陷入容量不足的风险已经出现。此前通过改进现有光纤或增加缆线数...【详细内容】
2021-01-12      Tags:5G   点击:(179)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条