日常的用户行为分析中,常用的六大分析方法有:
用户分析能够更好地了解用户的行为习惯,发现产品在推广、拉新、用户留存、转化等方面存在的问题,有助于发掘高质量的推广拉新渠道、发现高转化率的方法,使产品的营销更加精准、有效。
行为事件分析法主要用于研究某行为事件的发生对产品的影响及影响程度,一般来说,事件通过埋点来获取。
对于一具体的行为,首先要对其进行定义,将人物(Who)、时间(When)、地点(Where)、交互(How)、交互内容(What)进行聚合,构成一个完整的用户行为事件。
定义完成后,需要进行多维度的下钻分析,进行细分,确认导致该行为的原因,针对存在的现象,找出产生这一现象的行为。如登录页面下,点击登录和跳过登录的新用户有什么行为差别。通过对用户行为事件的定义,然后进行多维度(如位置、事件、app版本等)拆分,找到原因。
页面点击分析主要用于显示页面或页面组(结构相同的页面,如商品详情页、官网首页等)区域中不同元素点击密度的图示,如某元素(如按钮)的点击次数、占比、哪些用户做了点击行为等。
页面点击分析主要解决三种问题:
页面点击分析模型主要用于对官网首页、活动页面、产品首页或详情页等存在交互的页面分析。通用的分析形式包括:可视化热力图(如下图)和固定埋点。
可以通过用户的页面浏览次数、浏览人数、点击次数、点击人数、点击人数/浏览人数、浏览时长等来判断用户的浏览喜好,也可以通过用户的浏览行为对用户进行分群,以便之后进行针对性的分析与优化。
通过对用户的行为路径进行分析,可以发现路径中存在的问题,如转化率问题,在发现具体问题的基础上,可以结合业务场景进行相应的优化提高。
这其中可包含转化漏斗和用户路径(行为轨迹):
转化漏斗是一种特殊的路径分析情况,多针对少数人为特定模块与事件节点进行路径分析,是预先设好的路径,主要用于提升转化效果。适用于对产品运营中关键环节进行分析和监控,发现其中的薄弱转化环节,通过用户引导或产品迭代进行优化,以此提高转化效果。
用户路径不需要预先设置漏斗,而是计算用户使用产品(app或网站)时的每个第一步,然后依次计算每一步的流向和转化。通过数据再现用户的整个行为轨迹。以此发现哪条路径用户访问最多,哪条路径用户容易流失。
用户健康度是基于用户的行为数据进行综合考虑得到的核心指标,用以体现产品的运营情况,为产品的发展进行预警。包括:产品基础指标、流量质量指标和产品营收指标。
uv是用来衡量产品量级最重要的指标;新用户数不仅可以看出拉新的效果,也可以看到新用户到老用户的一个转变过程。
跳出率是指浏览单页即退出的次数/访问次数,可用来衡量用户的访问质量,跳出率高时可能表示内容对用户无吸引性;人均停留时长能反映出产品对用户的吸引程度;留存率能从侧面反映一个渠道的质量,如付费、粘性,价值量,CAC成本等;用户回访率指用户在使用某产品后的N天/周/月之后,再次使用该产品的比例。
用户支付金额(产品某段时间的流水)、客单价(支付有效金额/支付用户数)、订单转化率(有效订单用户数/uv)都与产品的营收相关,产品营收存在以下恒等式:
销售额 = 访客数*成交转化率*客单价
销售额= 曝光次数*点击率*成交转化率*客单价
漏斗模型是一套流程式的数据分析模型,能够反映出用户行为状态以及从开始到最终各阶段的转化率及总体转化率情况。最常用的两个指标为:转化率和流失率。
举个栗子:
上图是共包括三步的注册流程,整个注册流程的总体转化率为46.5%,即1000个访问了注册页的用户中,有465个成功完成了注册。关注到每一步的转化率,发现第二步的转化率为65.3%,明显低于第一步的85.3%和第三步的83.5%,由此可推测,这一步骤可能存在问题。可针对这一注册步骤去发现问题,再进行转化率的提高,以提高整体的转化率。
经典漏斗模型为AARRR,包括五个阶段:获客(Acquisition)、激活(Activation)、留存(Retention)、营收(Revenue)、自传播(Referral)。
AARRR模型是围绕增长建立的,主要关注拉新获客。而当今时代,对绝大多数产品而言,拉新成本剧增,dau流失率剧增,流量红利时代一去不复返。因此,以拉新获客为中心的增长模式变得没有意义,获客不再是增长的王道,或许可以说已经过时了。当下流行的多为RARRA模型:留存(Retention)、激活(Activation)、自传播(Referral)、营收(Revenue)、获客(Acquisition),即AARRR模型的优化,此模型突出了用户留存的重要性,通过用户留存来关注增长。
用户画像是根据用户特征、网络浏览内容、网络社交活动和消费行为等信息抽象得到的一个标签化的用户模型。通过对数据进行挖掘和分析,给用户“贴标签”,“标签”用来表示用户某一维度特征的标识,可用于业务运营和数据分析。
用户画像的主要内容可包含:性别、年龄、职业、位置(城市、居住区域)、兴趣爱好(购买、订阅、阅读等)、设备属性(Android/ target=_blank class=infotextkey>安卓、IOS)、行为数据(浏览时长、路径、点赞、收藏、评论、活跃度)、社交方式等等。不同的行业和产品对用户的特征关注点不一样,一般都具有自己的用户标签体系。
好了,就分享这么多啦,更多数据分析相关内容关注我,我会定期分享精彩干货内容!