大数据安全是监控和保护企业重要业务数据的过程,其目的是确保业务安全合规地持续运营。
确保大数据平台的安全需要传统的安全工具、新开发的工具集和智能流程的组合,以在大数据平台的整个生命周期内监控安全性。
大数据安全的任务非常明确:通过防火墙、强大的用户身份验证、最终用户培训、入侵保护系统(IPS)和入侵检测系统(IDS)阻止未经授权的用户的访问和入侵。万一有人获得访问权限,需要对传输和静止的数据进行加密。
这是一种网络安全策略。然而,大数据环境增加了另一个级别的安全性,因为安全工具必须在网络中不存在的三个阶段中运行。这三个阶段分别是:数据输入,也就是输入的内容;存储数据;数据输出到应用程序和报告中。
大数据的安全是一条迂回的道路,从理论上来说,它可能会在多个点上受到网络攻击。
大数据领域的两个最主要趋势在某种程度上是相互对立的:为智能技术提供信息的大数据的激增,以及消费者在决定如何使用他们的个人数据方面越来越重视安全性。
物联网、人工智能、机器学习甚至CRM数据库等技术收集了包含高度敏感个人信息的TB级规模的数据。这种个人的大数据对于那些希望更好地为其受众提供产品和服务的企业来说是有价值的,但这也意味着所有公司和第三方供应商都要对个人数据的道德使用和管理负责。
随着大数据及其企业用例的持续增长,大多数企业都在努力遵守消费者数据法律法规,但他们的安全漏洞使数据容易被破坏。以下介绍大数据世界中的一些顶级趋势,许多企业忽视的重要安全要点,以及一些确保大数据安全的建议:
大数据的增长导致许多企业转向云计算和数据结构基础设施,以支持更多的数据存储可扩展性。云安全通常是基于遗留安全原则建立的,因此,如果云安全特性配置错误,容易受到网络攻击。
对于企业来说,要做到这一点,需要与云计算供应商和存储供应商讨论他们的产品,是否嵌入了安全解决方案,以及他们或第三方合作伙伴是否推荐了任何额外的安全资源。
物联网和其他移动设备是大数据的最主要的来源和接收器,但它们也带来了一些安全漏洞,因为许多这些技术都是为个人生活所拥有和使用的。企业需要为员工如何使用个人设备上的公司数据设置严格的策略,并确保设置额外的安全层,以便管理哪些设备可以访问敏感数据。
在大多数情况下,大数据是由于成功的网络钓鱼攻击或其他针对不知情员工的个性化攻击而受到损害。企业培训其员工了解典型的社交工程攻击及其特征,并设置几层身份验证安全措施以限制哪些人员可以访问敏感数据存储。
大数据安全系统具有客户保留、风险识别、业务创新、成本和效率等优势,对任何企业来说都有价值。
以下是大数据安全的主要好处:
确保大数据的安全面临一些挑战,可能会危及其安全性。需要记住的是,这些挑战绝不仅限于内部部署的大数据平台。它们也与云计算有关,当企业在云平台中托管大数据平台时,也面临安全性挑战,没有什么是理所当然的。企业可以与其云服务提供商密切合作,通过强大的安全服务级别协议来克服这些挑战。
以下是大数据安全面临的主要挑战:
从加密到用户访问控制,这些大数据安全工具都不是新工具。新颖之处在于它们的可扩展性和在不同阶段保护多种类型数据的能力。
无论企业是刚刚开始大数据管理并正在寻求初始的大数据安全解决方案,无论是企业还是长期的大数据用户都需要更新安全性,这里有一些大数据安全实施的提示:
大数据部署跨越多个业务部门。IT人员、数据库管理员、程序员、质量测试人员、信息安全人员、合规主管以及业务部门都以某种方式负责大数据部署。那么谁负责保护大数据? 其答案是每个人。IT人员和信息安全人员负责政策、流程和安全软件,有效保护大数据部署免受恶意软件和未经授权的用户访问。合规人员必须与该团队密切合作,以保护合规性,例如自动从发送给质量控制团队的结果中剥离信用卡号码。数据库管理人员应该与IT部门和信息安全部门紧密合作,以保护他们的数据库。
最后,终端用户同样有责任保护企业的数据。具有讽刺意味的是,尽管许多企业使用他们的大数据平台来检测入侵异常,但大数据平台和任何存储的数据一样容易受到恶意软件和网络入侵者的攻击。网络攻击者渗透网络(包括大数据平台)最简单的方法之一就是发送电子邮件。尽管大多数用户都知道如何删除来自不明来源或伪造的邮件,但一些网络钓鱼攻击非常复杂。当管理员管理企业大数据平台的安全性时,永远不要忽视不起眼的电子邮件的力量。
企业需要确保大数据平台免受各种威胁,它将为企业的业务提供多年的良好服务。
数字安全是一个庞大的领域,有着成千上万的供应商。考虑到高技术挑战和可扩展性要求,大数据安全是一个相当小的领域。然而,大数据所有者愿意并且能够支付费用来确保有价值的就业机会,大数据安全供应商也在做出回应。以下是一些具有代表性的大数据安全公司。
Snowflake公司的数据专家团队认为,数据安全应该内置到所有数据管理系统中,而不是在事后添加。Snowflake公司的数据云包括全面的数据安全功能,例如数据屏蔽和端到端加密传输和静态数据。他们还为用户提供可访问的支持,允许他们提交报告,Snowflake和他们的合作伙伴HackerOne公司可以在运行他们的私人漏洞程序时进行分析。
Teradata公司是数据库和分析软件的顶级提供商,他们也是云数据安全解决方案的主要支持者和提供商。他们的托管服务名为云数据安全即服务,提供定期第三方审计,为数据监管委员会的审计做准备。它们还提供传输和静态数据加密、数据库用户角色管理、存储设备退役、云安全监控和两层云安全防御计划等功能。
Cloudera公司在大数据安全方面的主要策略是通过他们的共享数据体验来巩固安全管理,或者从统一的角度管理所有工作负载的安全和策略。这意味着,即使工具和最常用的工作负载随着时间的推移而变化,策略和安全更新仍然可以集中管理,而不会出现孤岛。在他们的安全解决方案中,Cloudera公司提供了统一的身份验证和授权、审计的端到端可见性、安全解决方案、特定于数据策略的解决方案以及多种形式的加密。
IBM公司的数据安全产品组合侧重于多种环境、全球数据法规和简单的解决方案,以便用户可以在部署之后轻松管理其数据源和安全更新。IBM公司在数据安全方面关注的一些主要领域包括混合云安全管理、嵌入式策略和法规管理以及安全的开源分析管理。
Oracle公司是大数据市场上最大的数据库主机和提供商之一,但他们也为客户提供一些顶级安全工具。他们的安全解决方案主要集中在以下几个方面:安全评估、数据保护和访问控制、审计和监控。他们还为两个最流行的解决方案(Autonomous Database和Exadata)扩展了特定于平台的安全支持。
如果企业使用精心选择的大数据安全工具,这些工具将在多年内为业务提供良好的服务,使其能够保护其大数据平台免受各种威胁。
大数据安全形势正在不断变化,以帮助所有的企业和用户。即使面临许多挑战,大数据安全的好处、易于实施以及当今先进的大数据安全工具也将帮助企业成长。