Rocksdb事务隔离性指的是多线程并发事务使用时候,事务与事务之间的隔离性,通过加锁机制来实现,本文重点剖析Read Commited隔离级别下,Rocksdb的加锁机制。
- Rocksdb事务相关类族
Rocksdb的事务相关的类图如下图所示。主要有两个类族,Transaction和DB,默认采用PessimisticTransaction,而PessimisticTransaction内部的加锁机制通过TransactionLockMgr来实现的。
TransactionLockMgr内部维护了LockMap。TransactionLockMgr根据每个记录的Key计算hash值,再对num_stripes取模,在LockMap中的向量Std::vector<LockMapStripe>定位LockMapStripe,这样减少实体锁的竞争激烈程度,相当于锁分解。
LockMap的数据成员如下
Size_t num_stripes LockMapStripe个数,默认16个
Std::vector<LockMapStripe> LockMapStripe数组
LockMapStripe的数据成员如下
std::shared_ptr<TransactionDBMutex> stripe_mutex : 实体锁
std::shared_ptr<TransactionDBCondVar> stripe_cv : 实体条件变量
std::unordered_map<std::string, LockInfo> keys : 具有相同Key hash值的每条记录的加锁信息,std::string为记录的Key值。
LockInfo的数据成员如下
bool exclusive : 排它锁,还是共享锁
uint64_t expiration_time : 锁的过期时间
autovector<TransactionID> txn_ids : 这把锁阻塞的事务ID列表
2. Rocksdb事务流程分析
上述流程,是应用创建TransactionDB,然后Put一条记录,再Commit的协作流程图,在Put阶段调用TransactionLockMgr的TryLock方法,Commit阶段调用TransactionLockMgr的UnLock方法。
TransactionLockMgr::TryLock内部的主要逻辑在AcquireLocked函数中,TransactionLockMgr::UnLock内部的主要逻辑在UnlockKey函数中,下面具体分析这两个函数。绿色部分字体为个人注解。
AcquireLocked
Status TransactionLockMgr::AcquireLocked(LockMap* lock_map,
LockMapStripe* stripe,
const std:: string & key, //记录的Key值
Env* env,
LockInfo&& txn_lock_info, //当前事务锁信息
uint64_t * expire_time, //锁的过期时间
autovector<TransactionID>* txn_ids)
{
Status result;
auto stripe_iter = stripe->keys. find (key); // 检查这条记录的Key是否已经被加锁了。
if (stripe_iter != stripe->keys. end ()) { // 这条记录的Key已经被之前事务加过锁
LockInfo& lock_info = stripe_iter-> second ;
if (lock_info.exclusive || txn_lock_info.exclusive) { //之前事务或者当前事务加的是排他锁,
if (lock_info.txn_ids.size() == 1 &&
lock_info.txn_ids[0] == txn_lock_info.txn_ids[0]) { //之前加锁的事务就是当前事务
lock_info.exclusive = txn_lock_info.exclusive;
lock_info.expiration_time = txn_lock_info.expiration_time;
} else { //之前加锁的事务不是当前事务
if (IsLockExpired(txn_lock_info.txn_ids[0], lock_info, env,
expire_time)) { // 之前事务加的锁已经过期,可以清除
lock_info.txn_ids = txn_lock_info.txn_ids;
lock_info.exclusive = txn_lock_info.exclusive;
lock_info.expiration_time = txn_lock_info.expiration_time;
} else {
result = Status::TimedOut(Status::SubCode::kLockTimeout);
*txn_ids = lock_info.txn_ids; // 返回之前事务列表
}
}
} else { //当前事务加的是共享锁
lock_info.txn_ids.push_back(txn_lock_info.txn_ids[0]);
lock_info.expiration_time =
std:: max (lock_info.expiration_time, txn_lock_info.expiration_time);
}
} else { // 这条记录的Key没有被之前事务加过锁
if (max_num_locks_ > 0 &&
lock_map->lock_cnt. load (std:: memory_order_acquire ) >= max_num_locks_) {
result = Status::Busy(Status::SubCode::kLockLimit);
} else {
// 当前事务执行加锁操作
stripe->keys. emplace (key, std:: move (txn_lock_info));
if (max_num_locks_) {
lock_map->lock_cnt++;
}
}
}
return result;
}
UnlockKey逻辑相对简单一些,主要是删除加锁的记录,并且唤醒被阻塞的事务。
void TransactionLockMgr::UnLockKey(const PessimisticTransaction* txn,
const std:: string & key,
LockMapStripe* stripe, LockMap* lock_map,
Env* env) {
TransactionID txn_id = txn->GetID();
auto stripe_iter = stripe->keys. find (key);
if (stripe_iter != stripe->keys. end ()) {
auto& txns = stripe_iter-> second .txn_ids;
auto txn_it = std:: find (txns. begin (), txns. end (), txn_id);
// Found the key we locked. unlock it.
if (txn_it != txns. end ()) {
if (txns. size () == 1) {
stripe->keys. erase (stripe_iter);
} else {
auto last_it = txns. end () - 1;
if (txn_it != last_it) {
*txn_it = *last_it;
}
txns.pop_back();
}
if (max_num_locks_ > 0) {
// Maintain lock count if there is a limit on the number of locks.
assert(lock_map->lock_cnt. load (std:: memory_order_relaxed ) > 0);
lock_map->lock_cnt--;
}
}
} else {
// This key is either not locked or locked by someone else. This should
// only hAppen if the unlocking transaction has expired.
assert(txn->GetExpirationTime() > 0 &&
txn->GetExpirationTime() < env->NowMicros());
}
}