您当前的位置:首页 > 电脑百科 > 程序开发 > 架构

放弃ElasticSearch,GitHub从零打造搜索引擎!2亿代码仓库怎么搜?

时间:2023-02-13 15:19:05  来源:51CTO  作者:新智元
目前Github新版搜索引擎已经处于测试阶段,只需18小时即可建完4500万个代码库的索引。

2021年12月,GitHub发布了一次技术预览(technology preview),针对GitHub代码搜索「啥也搜不出来」的问题进行了一次全面优化。

去年11月,在GitHub Universe开发者大会上,官方再次发布了公开测试版,主要解决开发者寻找、阅读和导航代码的问题。

在大会上,有人问了一个重要的问题,「代码搜索」改进背后的原理到底是什么?

最近,GitHub发布了一篇博客,详细解释了新模型背后的技术原理和系统架构

从零打造GitHub搜索引擎

简单来说,新搜索引擎的背后就是研究人员用Rust重新编写的一个轮子,专门针对代码搜索进行优化,代号黑鸟(Blackbird)。

乍一看,从零开始构建搜索引擎似乎是一个令人费解的决定:为什么要从头再来?现有的开源解决方案不是已经很多了吗?为什么还要再浪费精力造一个新的东西?

实际上GitHub一直在尝试使用现有的解决方案来解决搜索问题,但不巧的是,用于通用文本搜索的产品很难适配到「代码」搜索上。由于索引速度太慢,导致用户体验很差,并且所需的服务器数量很大,运行成本也过高。

虽然有一些较新的、专门适配于代码搜索的开源项目,但它们仍然不适合 GitHub这么大规模的代码库。

基于上述观察,GitHub的开发者设定的目标和结论主要有三个:

1. 用户在搜索过程中能够得到全新的体验,可以通过提出一些代码上的问题来迭代搜索、浏览、导航(navigate)和阅读代码来得到答案。

2. 代码搜索与通用文本搜索之间有着许多不同之处。

开发者编写代码是为了让机器理解,所以代码搜索的过程应该利用上代码的结构和相关性;并且用户可能会搜索标点符号(例如,句号、开括号等代码中的操作符);不要对代码中的词做词干分析(stemming);不要从query中删除停止词;或者使用正则表达式进行搜索。

3. GitHub 的规模确实是一个独特的挑战。

旧版本的搜索引擎使用的是Elasticsearch,第一次部署的时候花了几个月的时间来索引GitHub上的所有代码(当时大约有800万个代码库),但现在代码仓库数量已经超过了2亿,而且这些代码还不是静态的:开发者不断提交,代码也在不断变化,对于构建搜索引擎来说非常具有挑战性。

目前在测试版中,用户可以搜索大约4500万个代码库,包含115TB的代码和155亿个文档。

综上所述,现成的东西满足不了需求,所以,从零开始再造一个。

试试Grep?

在搜索的时候,一个常用的工具就是「grep」,通过输入表达式,就能在文本中进行匹配,所以为什么不干脆用grep蛮力解决搜索问题?

为了回答这个问题,可以先计算一下用ripgrep对115TB的代码进行匹配需要多长时间。

 

图片

 

在一台配备8核 Intel CPU 的机器上,ripgrep 可以在2.769秒内(约0.6 GB/sec/core)对缓存在内存中的13 GB 文件运行正则表达式查询。

简单的计算后就能发现,对于当下的海量数据来说,该方法是行不通的:假设代码搜索程序运行在一个拥有32台服务器的集群上,每台机器有64个核心,即使把115TB的代码全放到内存里,并且一切运行顺利,2,048个 CPU 核大概需要96秒跑完「一个」query,而且只能是一个,其他用户得排队,也就是说只有QPS是0.01的话才能用grep

所以蛮力走不通,只能先建一个索引。

搜索索引(serach index)

只有以索引的形式预先计算好相关信息后,才能让搜索引擎在查询时快速响应,简单来说,索引就是一个key-value映射,在倒排索引(inverted index)的情况下,key就是一个关键词,value就是出现该词的有序文档ID列表。

在代码搜索任务中,研究人员用到了一种特殊类型的倒排索引,即ngram索引。

一个 ngram 是长度为 n 的字符序列,例如 n = 3(trigams)意为key的最大长度只能是3,对于较长的key来说,就需要按照长度3进行切割,比如limits就被分为lim, imi, mit和its

执行搜索时,综合多个key的查询结果,合并后得到该字符串所出现的文档列表

下一个问题是如何在相对合理的时间内完成索引的构建。

研究人员观察到:Git 使用内容寻址散列,以及 GitHub 上实际上有相当多的重复内容,所以研究人员提出下面两个方法建立索引。

1. shard by Git blob object ID 提供了一种在 shards 之间均匀分布文档的好方法,并且可以避免重复,同时能够根据需要随时扩展shards的数量。

2. 将索引建模为树,并使用差分编码(delta encoding)来减少crawling的数量并优化索引中的元数据,其中元数据包括文档出现的位置列表(哪个path、分支和代码库)以及关于这些对象的信息(代码库名称、所有者、可见性等)。对于一些热门仓库来说,元数据量可能会相当大。

GitHub还设计了一个系统,使得查询结果与提交后的代码保持一致。

如果用户在团队成员推送代码时搜索代码库,那么在系统完全处理完新提交的文档之前,搜索结果中不应该包含这些文档,Blackbird将commit查询一致性作为其设计的核心部分。

Blackbird

下面是Blackbird搜索引擎的架构图。

 

图片

 

首先,Kafka会提供events来指定索引的内容,然后就会有大量的爬虫(crawler)程序与Git进行交互,其中还有一个从代码中提取符号的服务;再次使用Kafka对每个shard进行索引,获取目标文档。

虽然该系统只是响应像「git push」来抓取更改内容等类似的事件,但在首次ingest所有代码库时还需要做一些额外的工作。

该系统的一个关键特性就是对初始ingest顺序的优化以充分利用增量编码。

GitHub使用了一种全新的概率数据结构来表示代码库的相似性,并且通过从代码库相似性图的一个最小生成树的水平顺序遍历中计算得到ingest的顺序。

基于优化后的ingest顺序,delta 树的构建过程就是将每个代码库与其父代码库进行差分,这也意味着该系统只需要抓取当前代码库所特有的 blobs,爬取包括从 Git 获取 blob 内容,分析后提取符号,以及创建将作为索引输入的文档。

然后将这些文件发布到另一个Kafka主题中,也是在shards之间将数据分区的地方。每个shards使用主题中的一个Kafka分区。

使用Kafka可以将索引与crawl解耦,并且Kafka中对消息的排序也可以也可以使得查询结果一致。

然后,indexer shards找到这些文档并构建索引:tokenizing内容、符号和path以构造 ngram indices和其他有用的indices(语言、所有者、代码库等) ,并将结果刷新到磁盘上。

最后,对shards进行压缩(compaction),将较小的索引折叠成较大的索引,这样查询起来更有效,移动起来也更容易。

query的生命周期

有了索引之后,通过系统跟踪query就变得简单了,每个query都是一个正则表达式,可以写作「/arguments?/ org:rAIls lang:Ruby」,即查找一个由Rails组织用Ruby语言编写的代码。

 

图片

 

在 GitHub.com 和shards之间还有一个服务,负责协调接收用户query,并将请求分散到搜索集群中的每个主机上,最后使用 redis 来管理磁盘空间(quotas)和缓存一些访问控制数据。

前端接受一个用户查询并将其传递给黑鸟,然后将query解析为一个抽象语法树,将其重写为规范的语言 ID,并在额外的子句上标记权限和范围。

 

图片

 

下一步将发送 n 个并发请求: 向搜索集群中的每个shard发送一个,系统中设定的sharding策略就是向集群中的每个shard发送查询请求。

然后,在每个单独的shard上对查询进行一些转换以便在索引中查找信息。

 

图片

 

最后聚合所有shard返回的结果,按分数重新排序,筛选(再次检查权限) ,并返回 top 100,然后GitHub.com 的前端进行语法突显、术语高亮、分页,最后我们才能将结果呈现给页面。

实际使用中,单个shard的p99响应时间大约是100ms,但是由于聚合response、检查权限以及语法突显等原因,总的响应时间要长一些。

一个query在索引服务器上占用一个 CPU 核心100毫秒,因此64个核心主机的上限大约是每秒640个查询。与 grep 方法(0.01 QPS)相比,这种方法可以说是相当快了。

总结

完整的系统架构介绍完以后,可以重新来审视一下问题的规模了。

GitHub的ingest pipeline每秒可以发布大约12万个文档,因此全部处理完155亿个文档需要大约36个小时;但是增量索引(delta indexing)可以降低所需抓取的文档数量的50%以上,使得整个过程可以在大约18小时内重新索引整个语料库。

在索引规模方面取得了一些突破,初始的内容量为115TB,删除重复内容、使用增量索引后将内容的数量减少到28TB左右。

而索引本身只有25TB,其中不仅包括所有索引(含ngram) ,还包括所有唯一内容的压缩副本,这也意味着包括内容在内的总索引大小大约只有原始数据大小的四分之一!



Tags:GitHub   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
GitHub顶流"Web OS"——运行于浏览器的桌面操作系统、用户超100万、原生jQuery和JS编写
Puter 是近日在 GitHub 上最受欢迎的一款开源项目,正式开源还没到一周 ——star 数就已接近 7k。作者表示这个项目已开发 3 年,并获得了超过 100 万用户。根据介绍,P...【详细内容】
2024-03-10  Search: GitHub  点击:(28)  评论:(0)  加入收藏
基于GitHub App 深度讲解Kotlin高级特性与框架设计
基于GitHub App 深度讲解Kotlin高级特性与框架设计GitHub App 是 GitHub 平台上的一种特殊类型的应用程序,它允许开发者通过 GitHub API 与 GitHub 上的仓库和组织进行交互...【详细内容】
2023-11-28  Search: GitHub  点击:(199)  评论:(0)  加入收藏
GitHub:程序员正积极使用 AI 编程、JavaScript 语言依然最流行
IT之家 11 月 20 日消息,GitHub 发布了 2023 年度 Octoverse 开源状态报告,其中主要强调了 AI 在开发过程中的作用,并围绕云和 Git 的开源活动展开。官方介绍称,今年的三大趋势...【详细内容】
2023-11-20  Search: GitHub  点击:(173)  评论:(0)  加入收藏
Git新手如何上传项目代码到GitHub并完成后续的代码更新?
国内对于个人站长的发展空间限制越来越多,首先是百度主推自家产品,现在权重最高的似乎就是百家号了,其次是腾讯云、阿里云这些提供IDC大厂提供的云端服务产品也很少有针对个人...【详细内容】
2023-11-15  Search: GitHub  点击:(243)  评论:(0)  加入收藏
如何在GitHub上存储源码并保持同步
GitHub是一个广泛使用的基于云的代码托管平台,它为开发者提供了一个便捷的方式来存储、管理和共享他们的源代码。通过GitHub,开发者可以轻松地与团队成员合作,跟踪代码更改,并保...【详细内容】
2023-11-15  Search: GitHub  点击:(238)  评论:(0)  加入收藏
GitHub在大会上发布的十大AI更新!
作者 | Tasmia 策划 | 言征出品 | 51CTO技术栈(微信号:blog51cto)GitHub的母公司微软在生成人工智能业务方面取得了巨大增长,该公司首席执行官萨蒂亚·纳德拉告诉华尔街,该...【详细内容】
2023-11-13  Search: GitHub  点击:(226)  评论:(0)  加入收藏
重塑 GitHub、颠覆程序开发:GitHub Universe 2023 发布重大更新
编译 | 核子可乐、TinaGitHub 的东家微软看到了生成式 AI 业务的大幅增长,其首席执行官萨蒂亚·纳德拉 (Satya Nadella) 告诉华尔街,GitHub Copilot 软件的付费客户在第...【详细内容】
2023-11-10  Search: GitHub  点击:(221)  评论:(0)  加入收藏
GitHub黑市曝光,高档刷星6元一颗,最奇葩开源项目97%都是刷的
梦晨 克雷西 发自 凹非寺量子位 | 公众号 QbitAI在黑市买GitHub星星多少钱?最贵的高达6元一颗。有创业者Yassin Eldeeeb自掏腰包测试了一把。他足足花20欧元(约156人民币),只买...【详细内容】
2023-11-05  Search: GitHub  点击:(60)  评论:(0)  加入收藏
AI编程,详细比较GitHub Copilot对比Amazon CodeWhisperer
1、简介GitHub Copilot和Amazon CodeWhisperer是采用人工智能技术驱动的编码助手,它们将自动完成编码功能提升到一个全新的水平。在最佳状态下,它们可以根据开发者提供的简短...【详细内容】
2023-11-01  Search: GitHub  点击:(225)  评论:(0)  加入收藏
大模型无法替代码农!普林斯顿芝大惊人发现:GPT-4解决GitHub编程问题成功率为0
Stack Overflow,已经被ChatGPT创飞了!因为码农大量涌向ChatGPT、Github Copilot,Stack Overflow今天不得已宣布裁员100多人,几乎占员工人数的1/3。所以,ChatGPT这类AI编码工具,真...【详细内容】
2023-10-17  Search: GitHub  点击:(287)  评论:(0)  加入收藏
▌简易百科推荐
对于微服务架构监控应该遵守的原则
随着软件交付方式的变革,微服务架构的兴起使得软件开发变得更加快速和灵活。在这种情况下,监控系统成为了微服务控制系统的核心组成部分。随着软件的复杂性不断增加,了解系统的...【详细内容】
2024-04-03  步步运维步步坑    Tags:架构   点击:(5)  评论:(0)  加入收藏
大模型应用的 10 种架构模式
作者 | 曹洪伟在塑造新领域的过程中,我们往往依赖于一些经过实践验证的策略、方法和模式。这种观念对于软件工程领域的专业人士来说,已经司空见惯,设计模式已成为程序员们的重...【详细内容】
2024-03-27    InfoQ  Tags:架构模式   点击:(16)  评论:(0)  加入收藏
哈啰云原生架构落地实践
一、弹性伸缩技术实践1.全网容器化后一线研发的使用问题全网容器化后一线研发会面临一系列使用问题,包括时机、容量、效率和成本问题,弹性伸缩是云原生容器化后的必然技术选择...【详细内容】
2024-03-27  哈啰技术  微信公众号  Tags:架构   点击:(12)  评论:(0)  加入收藏
DDD 与 CQRS 才是黄金组合
在日常工作中,你是否也遇到过下面几种情况: 使用一个已有接口进行业务开发,上线后出现严重的性能问题,被老板当众质疑:“你为什么不使用缓存接口,这个接口全部走数据库,这怎么能扛...【详细内容】
2024-03-27  dbaplus社群    Tags:DDD   点击:(15)  评论:(0)  加入收藏
高并发架构设计(三大利器:缓存、限流和降级)
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。引言1.高并发背景互联网行业迅速发展,用户量剧...【详细内容】
2024-03-13    阿里云开发者  Tags:高并发   点击:(8)  评论:(0)  加入收藏
如何判断架构设计的优劣?
架构设计的基本准则是非常重要的,它们指导着我们如何构建可靠、可维护、可测试的系统。下面是这些准则的转换表达方式:简单即美(KISS):KISS原则的核心思想是保持简单。在设计系统...【详细内容】
2024-02-20  二进制跳动  微信公众号  Tags:架构设计   点击:(38)  评论:(0)  加入收藏
详解基于SpringBoot的WebSocket应用开发
在现代Web应用中,实时交互和数据推送的需求日益增长。WebSocket协议作为一种全双工通信协议,允许服务端与客户端之间建立持久性的连接,实现实时、双向的数据传输,极大地提升了用...【详细内容】
2024-01-30  ijunfu  今日头条  Tags:SpringBoot   点击:(21)  评论:(0)  加入收藏
PHP+Go 开发仿简书,实战高并发高可用微服务架构
来百度APP畅享高清图片//下栽のke:chaoxingit.com/2105/PHP和Go语言结合,可以开发出高效且稳定的仿简书应用。在实现高并发和高可用微服务架构时,我们可以采用一些关键技术。首...【详细内容】
2024-01-14  547蓝色星球    Tags:架构   点击:(120)  评论:(0)  加入收藏
GraalVM与Spring Boot 3.0:加速应用性能的完美融合
在2023年,SpringBoot3.0的发布标志着Spring框架对GraalVM的全面支持,这一支持是对Spring技术栈的重要补充。GraalVM是一个高性能的多语言虚拟机,它提供了Ahead-of-Time(AOT)编...【详细内容】
2024-01-11    王建立  Tags:Spring Boot   点击:(128)  评论:(0)  加入收藏
Spring Boot虚拟线程的性能还不如Webflux?
早上看到一篇关于Spring Boot虚拟线程和Webflux性能对比的文章,觉得还不错。内容较长,抓重点给大家介绍一下这篇文章的核心内容,方便大家快速阅读。测试场景作者采用了一个尽可...【详细内容】
2024-01-10  互联网架构小马哥    Tags:Spring Boot   点击:(126)  评论:(0)  加入收藏
站内最新
站内热门
站内头条