您当前的位置:首页 > 电脑百科 > 程序开发 > 架构

DDD 与 CQRS 才是黄金组合

时间:2024-03-27 15:18:13  来源:  作者:dbaplus社群

在日常工作中,你是否也遇到过下面几种情况:

  • 使用一个已有接口进行业务开发,上线后出现严重的性能问题,被老板当众质疑:“你为什么不使用缓存接口,这个接口全部走数据库,这怎么能扛住!”
  • 开发一个后台管理功能,业务反馈说数据一直不对,对比后发现缓存与数据库不一致,为什么要使用缓存接口呢,你陷入沉思?
  • 产品要求在 xxx 上增加新功能,编码、测试、上线一气呵成,最后发现另外一个流程被躺枪,出现异常不得不进行回滚!
  • 在一个高并发的场景,DB 成为了系统瓶颈,不加索引查询扛不住,加索引更新扛不住,又该如何处理?
  • 随着数据量的激增,系统变得越来越慢,特别是后台管理复杂的查询场景下,复杂的 Join 让 DB 不堪重负。
  • ……

为什么会出现这种现象?其本质仍旧是代码组织结构不合理,我们将不同的复杂性揉在一起,从而造成了更大的复杂性,然后如此往复,不知不觉中陷入巨大的复杂性漩涡不可自拔。

一、CQRS 是什么?

CQRS 是 Command Query Responsibility Segregation 的简称,简单理解就是对 “写”(Command) 和 “读” (Query)操作进行分离。反应快的同学会说:“也不是什么高深技术吗,不就是数据库的读写分离吗?”

是的,数据库的读写分离也算是一种 CQRS,但 CQRS 的含义要比这复杂得多。

CRQS 既是一种流行的业务架构,又是一种设计思维。

CQRS 的核心是“拆分”,将复杂系统拆分为 Command 和 Query 两个部分,针对不同的场景使用不同的模式,选择最合适的技术落地最佳解决方案,避免两者相互掣肘相互影响。

CQRS的目的是降低整个系统的复杂性,那它背后的逻辑是什么?

假设,在一个系统中:

  • Command 的复杂性为 M
  • Query 的复杂性为 N

如果使用同一套模型来处理 Command 和 Query,那在极端情况下,系统的复杂性为 M * N,因为两者相互影响,调整一方的同时要时刻关注对另一方的影响。

这种“你中有我,我中有你”的设计方式,“两者的相互影响”成为系统最为复杂之处,大量精力消耗在“排查影响”,而非最有价值的设计和编码。

如果,将 Command 和 Query 彻底分离,系统的复杂性变成 M + N。Command 的变更不会影响 Query,而 Query 的修改也不会影响 Command。

当然,以上两个极端在实际工作中也很少见,通常系统的复杂性介于两者之间。

这只是从理论进行推导,在实际工作中随处可见的“冲突”也是对“拆分”的一种暗示。

二、分层架构中的冲突

以最常见的分层架构进行介绍,具体如下:

如图所示,将系统分成5层,每层的含义如下:

  • Web 接入层。主要用于处理系统输入,对输入信息进行验证,调用应用服务完成业务操作,对结果进行转换,最终返回给调用方;
  • 应用服务层。主要处理业务流程编排,从仓库中获取领域对象,执行领域模型的业务操作,将最新的对象状态通过仓库同步到数据存储引擎,并对外发布领域事件;
  • 领域层。业务逻辑的承载点,是业务价值的集中体现,通常构建于面向对象设计之上,基于封装、继承、多态等特性保障业务逻辑的复用性和扩展性;
  • 仓库层。主要用于数据访问,向上为应用服务提供数据操作服务,向下屏蔽各类存储引擎的差异;
  • 数据层。主要用于数据保存和检索,常见的数据存储引擎全部属于这一层,比如 MySQLredis、ES 等;

其实,分层架构本身也是一种“拆分”,将不同的关注点封装在不同的层次。但除了横向分层,还可以基于 CQRS 对其进行纵向拆分,也就是将每个层的组件拆分为 Command 和 Query 两部分。

由于接入层冲突较小,本身拆分的意义不大,在此不做要求,但从严格意义上讲,仍旧建议进行拆分。

三、应用服务层冲突与拆分

应用服务层拆分就是将一个应用服务拆分为 CommandService 和 QueryService 两组。

这样做可以避免很多不必要的麻烦,Command 和 Query 存在较大的区别,具体如下:

回想开篇时提到的场景,完成应用层拆分,就不再为使用错组件而烦恼:

  • CommandService 的 Repository 不使用缓存,仅操作数据库
  • QueryService 的 Repository 可以使用缓存,以提升访问性能

除此之外,针对统一的操作流程,还可以进一步抽象来消除重复的“模板代码”,比如:

1.引入“模板方法设计模式” 以达到核心逻辑的复用

  • 抽象出 BaseCommandService 和 BaseQueryService 两个父类用于统一核心流程
  • 子类实现 BaseCommandService 和 BaseQueryService 的抽象方法完成功能扩展

2.基于“约定优于配置” 使用 Proxy 模型,只定义接口不写实现代码

  • 按规范定义 CommandService 和 QueryService 接口,通过注解完成相关配置
  • 自动生成 Proxy 实现类,完成流程编排

四、模型层冲突与拆分

模型层是系统的核心,它的设计直接影响整个系统的质量。作为承接业务逻辑的核心,比较流程的实现策略包括:

  • DDD 领域驱动设计,其核心是使用面向对象的高级特性(封装、继承、多态、组合等)来进行设计,非常适合复杂的业务场景。其体现就是存在很多高内聚低耦合的对象组(聚合根),业务逻辑由这些小对象相互协作共同完成;
  • 事务脚本,使用过程式思维,将数据操作编织到流程中,比较适合并不复杂的业务场景。其体现就是存在很多“上帝 Service”,Service 中存在很多非常长的方法,业务逻辑由这些方法完成。

关于哪个才是最优解,网上已经争论多年,最终也没有结论。但我始终认为“没有业务场景就讨论方案,就是在耍流氓”。

从不同应用场景出发便可得到如下结论:

  • Command 场景需要保障严谨的业务逻辑,通常复杂性偏高,所以DDD 是最优解
  • Query 场景需要更灵活的数据组装能力作为支持,通常比较简单,所以 事务脚本 是最优解

我经常说:“最简单的“写”也是复杂,最复杂的“读”也是简单”,其背后逻辑是基于对 Command 和 Query 的场景判断。

将模型拆分为 Command 和 Query,具体如下:

完成模型拆分后,新模型具有以下特征:

  • Agg 也就是 DDD 中聚合根,主要用于处理复杂的 Command 逻辑,由具有大量业务操作的"富对象"构成;
  • View 是标准的 POJO,主要充当 Query 结果对象,典型的“贫血对象”,仅作为数据的载体,根据展示需求对数据进行组装;
  • View 没有自己的 Repository,只能依赖 CommandRepository 获取数据,Converter 组件负责将 Agg 模型转换为 View 模型。

这块是拆分的重点,为了方便理解,简单举个例子:

比如在电商的订单模块:

  • 生单流程,由 Order 作为聚合根对内部 OrderItem 和 PayInfo 进行统一协调
  • 订单列表页,只需展示 Order 和 User 信息
  • 订单详情,需要展示Order、User、Address、OrderItem、PayInfo、Product等信息

如果让一个模型同时支持着三个场景,那模型自己就变得非常复杂,很难判断某个方法、某个字段究竟属于哪个场景。

此时,应该根据场景对模型进行拆分:

  • OrderBO 以 DDD 方式进行建模,对外提供统一的业务操作,对内协调 OrderItem 和 PayInfo 等多个实体对象;
  • OrderListVO 以 POJO 方式进行建模,属性中包含 Order 和 User 信息;
  • OrderDetAIlVO 以 POJO 方式进行建模,属性中包括 Order、User、Address、OrderItem、PayInfo、Product 等信息;

三个模型相互独立,互不影响。

当然,由于使用统一的 Repository 还需提供对应 VO 的 Converter:

  • OrderListVOConverter 将 OrderBO 转换为 OrderListVO 对象
  • OrderDetailVOConverter 将 OrderBO 转化为 OrderDetailVO 对象

五、仓库层冲突与拆分

仓库层拆分也是非常有必要的,在这一层主要有几项冲突:

仓库拆分后整体架构如下:

仓库拆分具有以下特点:

  • View 不再需要 Converter 组件完成数据转换
  • View 的数据来自于自己的 Repository,可以根据展示需求进行灵活定制
  • Command 和 Query 仍旧使用同一套数据库、同一套数据表

六、数据层冲突与拆分

数据层拆分是最重要的拆分,提到分离第一反应也是“数据库主从分离”。

数据层拆分的本质是:各种数据存储引擎的最佳应用场景相差巨大,读 和 写 优化往往存在矛盾。

仍旧以最常见的数据库为例:

  • 提升查询性能,建议为各种查询维度建立索引
  • 提升写入性能,需要让表上的索引越来越少
  • 为了加速更新性能,建议使用三范式设计表结构,减少冗余信息
  • 为了加速查询性能,建议使用反范式设计,尽量冗余数据,避免数据表间的 Join 操作

鱼和熊掌不可兼得,在数据库层展示得淋漓尽致!

数据层拆分后架构如下:

该模型具有以下特点:

  • 数据存储进行了彻底拆分;Command 和 Query 都可以灵活的选择最合适的存储引擎;
  • Command 与 Query 需要引入一套同步机制以完成两者的数据同步,常见的同步机制有:
  • 工作在应用层基于领域事件的数据同步,如图所示
  • 工作在数据层基于log的数据同步,如 MySQL 的主从同步、Canal2XX 等

数据层拆分是大型系统最终的归宿,仍旧以订单系统为例:

  • 订单作为一致性要求极高的系统,Command 侧首选仍旧为具有 ACID 的关系型数据库,哪怕是分库分表底层存储仍旧不变;
  • 为了满足高性能查询需求,需要在 Query 侧引入 Redis 作为分布式缓存对访问进行加速;
  • 为了满足后台复杂且多维度的业务查询,需要在 Query 侧引入 ES 为全文检索进行加速;
  • 为了满足各种实时报表需求,需要在 Query 侧引入 TiDB 以满足海量数据的实时检索;

这就是我们面临的现状:“数据密集型系统”越来越多的应用程序有着各种严格而广泛的要求,单个工具不足以满足所有的数据处理和存储需求。取而代之的是,总体工作被拆分成一系列能被单个工具高效完成的任务,并通过应用代码将它们缝合起来,通过 API 的方式,对外提供服务,屏蔽内部的复杂性。

七、小结

“拆分”是“分离关注点”的重要手段之一。拆分的目的是将问题进行归类,然后采取有针对性的手段更好解决问题。

CQRS 作为一种架构,将业务系统不同部分进行归类,接下来需要为 Command 和 Query 寻找最优解决方案:

Command,以 DDD 作为理论基础将战术模型中最佳实战进行落地,包括:

  • 聚合设计
  • 仓库设计
  • LazyLoad + Context 模式
  • 业务验证
  • 领域事件

Query,以数据检索和组装作为核心能力,设计留给开发人员,实现留给框架包括:

  • QueryObject 查询对象模式
  • 内存 Join 模式
  • 宽表&冗余表模式

作者丨geekhalo

来源丨公众号:geekhalo(ID:geekhalo)



Tags:DDD   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
DDD 与 CQRS 才是黄金组合
在日常工作中,你是否也遇到过下面几种情况: 使用一个已有接口进行业务开发,上线后出现严重的性能问题,被老板当众质疑:“你为什么不使用缓存接口,这个接口全部走数据库,这怎么能扛...【详细内容】
2024-03-27  Search: DDD  点击:(11)  评论:(0)  加入收藏
DDD死党:单引擎查询利器
基于索引的单表查询,是 MySQL 正确打开方式!基于 QueryObject 的声明式查询,是简单查询的正确使用方式!1、应用场景单表查询在业务开发中占比最大,是所有 CRUD Boy 的入门必备,所...【详细内容】
2023-12-19  Search: DDD  点击:(121)  评论:(0)  加入收藏
DDD死党:内存Join——将复用和扩展用到极致
1. 为什么"内存Join"是个无法绕过的话题首先,我们先简单解释下,什么是“内存Join”。相信大家对关系数据库的 join 语句肯定不陌生,其作用就是通过关联关系从多个表中查询数据,...【详细内容】
2023-12-14  Search: DDD  点击:(211)  评论:(0)  加入收藏
我们聊聊DDD、SOA、微服务和微内核
DDD、SOA、微服务和微内核,看到经常有人把这几个概念拿出来一起讲。事实上,DDD和其他三个不是一个维度的东西。DDD其实特别好理解,DDD就是领域来驱动设计嘛,是一种设计思想。很...【详细内容】
2023-12-08  Search: DDD  点击:(231)  评论:(0)  加入收藏
DDD架构下的防御式编程:5大关卡共同保障业务数据的有效性
一般情况下,在流程达到存储引擎前,所有的验证规则必须全部通过,尽量不要使用存储引擎作为兜底方案。但有一种情况极为特殊,也就只有存储引擎能够优雅的完成,那就是唯一键保护。1....【详细内容】
2023-12-03  Search: DDD  点击:(140)  评论:(0)  加入收藏
DDD四层微服务架构
一、微服务搭建思路大家看到的这张架构图并不是空穴来潮,它是通过不断演变出来的,我们要从DDD四层架构、微服务架构两个维度去融合理解。这里的DDD四层架构适用于单个服务的工...【详细内容】
2023-11-24  Search: DDD  点击:(216)  评论:(0)  加入收藏
DDD 必备架构--六边形架构
架构是研究“分”和“合”的艺术,通过“分离关注点”将系统拆分为多个部分,然后在“原则和规则”的约束下对组件进行装配,形成高内聚的构件;再根据需求对多个构件进行关联,形成低...【详细内容】
2023-11-09  Search: DDD  点击:(374)  评论:(0)  加入收藏
DDD 与 CQRS 才是黄金组合,你觉得呢?
“数据密集型系统”越来越多的应用程序有着各种严格而广泛的要求,单个工具不足以满足所有的数据处理和存储需求。取而代之的是,总体工作被拆分成一系列能被单个工具高效完成的...【详细内容】
2023-11-08  Search: DDD  点击:(284)  评论:(0)  加入收藏
DDD与微服务集成的第一战役:客户端重试&服务端幂等
当一个接口从简单的内部调用升级为远程方法调用(RPC)会面临很多问题,比如: 本地事务失效。在内部调用时,多个方法通常在同一事务中执行,可以使用本地数据库事务来确保数据的一致性...【详细内容】
2023-10-30  Search: DDD  点击:(380)  评论:(0)  加入收藏
去哪儿网架构演进之路:微服务的尽头原来是DDD……
一、架构设计理念与技术1.架构演变路径图片 单体(又称巨石系统):所有业务融合于一体。在项目早期,公司一般会选择单体以降低运营等各方面成本。 服务化:随着业务飞速发展和流量增...【详细内容】
2023-10-11  Search: DDD  点击:(265)  评论:(0)  加入收藏
▌简易百科推荐
对于微服务架构监控应该遵守的原则
随着软件交付方式的变革,微服务架构的兴起使得软件开发变得更加快速和灵活。在这种情况下,监控系统成为了微服务控制系统的核心组成部分。随着软件的复杂性不断增加,了解系统的...【详细内容】
2024-04-03  步步运维步步坑    Tags:架构   点击:(4)  评论:(0)  加入收藏
大模型应用的 10 种架构模式
作者 | 曹洪伟在塑造新领域的过程中,我们往往依赖于一些经过实践验证的策略、方法和模式。这种观念对于软件工程领域的专业人士来说,已经司空见惯,设计模式已成为程序员们的重...【详细内容】
2024-03-27    InfoQ  Tags:架构模式   点击:(13)  评论:(0)  加入收藏
哈啰云原生架构落地实践
一、弹性伸缩技术实践1.全网容器化后一线研发的使用问题全网容器化后一线研发会面临一系列使用问题,包括时机、容量、效率和成本问题,弹性伸缩是云原生容器化后的必然技术选择...【详细内容】
2024-03-27  哈啰技术  微信公众号  Tags:架构   点击:(10)  评论:(0)  加入收藏
DDD 与 CQRS 才是黄金组合
在日常工作中,你是否也遇到过下面几种情况: 使用一个已有接口进行业务开发,上线后出现严重的性能问题,被老板当众质疑:“你为什么不使用缓存接口,这个接口全部走数据库,这怎么能扛...【详细内容】
2024-03-27  dbaplus社群    Tags:DDD   点击:(11)  评论:(0)  加入收藏
高并发架构设计(三大利器:缓存、限流和降级)
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。引言1.高并发背景互联网行业迅速发展,用户量剧...【详细内容】
2024-03-13    阿里云开发者  Tags:高并发   点击:(5)  评论:(0)  加入收藏
如何判断架构设计的优劣?
架构设计的基本准则是非常重要的,它们指导着我们如何构建可靠、可维护、可测试的系统。下面是这些准则的转换表达方式:简单即美(KISS):KISS原则的核心思想是保持简单。在设计系统...【详细内容】
2024-02-20  二进制跳动  微信公众号  Tags:架构设计   点击:(36)  评论:(0)  加入收藏
详解基于SpringBoot的WebSocket应用开发
在现代Web应用中,实时交互和数据推送的需求日益增长。WebSocket协议作为一种全双工通信协议,允许服务端与客户端之间建立持久性的连接,实现实时、双向的数据传输,极大地提升了用...【详细内容】
2024-01-30  ijunfu  今日头条  Tags:SpringBoot   点击:(8)  评论:(0)  加入收藏
PHP+Go 开发仿简书,实战高并发高可用微服务架构
来百度APP畅享高清图片//下栽のke:chaoxingit.com/2105/PHP和Go语言结合,可以开发出高效且稳定的仿简书应用。在实现高并发和高可用微服务架构时,我们可以采用一些关键技术。首...【详细内容】
2024-01-14  547蓝色星球    Tags:架构   点击:(114)  评论:(0)  加入收藏
GraalVM与Spring Boot 3.0:加速应用性能的完美融合
在2023年,SpringBoot3.0的发布标志着Spring框架对GraalVM的全面支持,这一支持是对Spring技术栈的重要补充。GraalVM是一个高性能的多语言虚拟机,它提供了Ahead-of-Time(AOT)编...【详细内容】
2024-01-11    王建立  Tags:Spring Boot   点击:(124)  评论:(0)  加入收藏
Spring Boot虚拟线程的性能还不如Webflux?
早上看到一篇关于Spring Boot虚拟线程和Webflux性能对比的文章,觉得还不错。内容较长,抓重点给大家介绍一下这篇文章的核心内容,方便大家快速阅读。测试场景作者采用了一个尽可...【详细内容】
2024-01-10  互联网架构小马哥    Tags:Spring Boot   点击:(115)  评论:(0)  加入收藏
站内最新
站内热门
站内头条