您当前的位置:首页 > 电脑百科 > 程序开发 > 架构

分布式系统设计中的并发访问解决方案

时间:2023-05-18 14:14:23  来源:得物技术  作者:
在分布式环境中,操作互斥性问题和幂等性问题非常普遍。经过分析,我们找出了解决这两个问题的基本思路和实现原理,并给出了具体的解决方案。

0、引言

随着互联网信息技术的飞速发展,数据量不断增大,业务逻辑也日趋复杂,对系统的高并发访问、海量数据处理的场景也越来越多。如何用较低成本实现系统的高可用、易伸缩、可扩展等目标就显得越发重要。

为了解决这一系列问题,系统架构也在不断演进。传统的集中式系统已经逐渐无法满足要求,分布式系统被使用在更多的场景中。分布式系统由独立的服务器通过网络松散耦合组成。在这个系统中每个服务器都是一台独立的主机,服务器之间通过内部网络连接。分布式系统有以下几个特点:

  • 可扩展性:可通过横向水平扩展提高系统的性能和吞吐量。
  • 高可靠性:高容错,即使系统中一台或几台故障,系统仍可提供服务。
  • 高并发性:各机器并行独立处理和计算。
  • 廉价高效:多台小型机而非单台高性能机。

然而,在分布式系统中,其环境的复杂度、网络的不确定性会造成诸如时钟不一致、"拜占庭将军问题"等。存在于集中式系统中的机器宕机、消息丢失等问题也会在分布式环境中变得更加复杂。

基于分布式系统的这些特征,有两种问题逐渐成为了分布式环境中需要重点关注和解决的典型问题:

  • 互斥性问题。
  • 幂等性问题。

今天我们就针对这两个问题来进行分析探讨。

1、并发访问互斥问题

先看一个常见的例子:

例1:某服务记录关键数据X,当前值为100。A请求需要将X增加200;同时,B请求需要将X减100。

在理想的情况下,A先读取到X=100,然后X增加200,最后写入X=300。B请求接着从读取X=300,减少100,最后写入X=200。

然而在真实情况下,如果不做任何处理,则可能会出现:A和B同时读取到X=100;A写入之前B读取到X;B比A先写入等情况。

以上的这个例子是典型的存在操作互斥性的问题,互斥性问题用通俗的话来讲,就是对共享资源的抢占问题。如果不同的请求对同一个或者同一组资源读取并修改时,无法保证按序执行,无法保证一个操作的原子性,那么就很有可能会出现预期外的情况。因此操作的互斥性问题,也可以理解为一个需要保证时序性、原子性的问题。

在传统的基于数据库的架构中,对于数据的抢占问题往往是通过数据库事务(ACID)来保证的。在分布式环境中,出于对性能以及一致性敏感度的要求,使得分布式锁成为了一种比较常见而高效的解决方案。事实上,操作互斥性问题也并非分布式环境所独有,在传统的多线程、多进程情况下已经有了很好的解决方案。因此在研究分布式锁之前,我们先来分析下这两种情况的解决方案,以期能够对分布式锁的解决方案提供一些实现思路。

1.1 多线程环境解决方案及原理

基本上所有的并发模式在解决线程冲突问题的时候,都是采用序列化访问共享资源的方案。

在多线程环境中,线程之间因为公用一些存储空间,冲突问题时有发生。解决冲突问题最普遍的方式就是用互斥锁把该资源或对该资源的操作保护起来。

JAVA JDK中提供了两种互斥锁Lock和synchronized。不同的线程之间对同一资源进行抢占,该资源通常表现为某个类的普通成员变量。因此,利用ReentrantLock或者synchronized将共享的变量及其操作锁住,即可基本解决资源抢占的问题。下面来简单聊一聊两者的实现原理。

1.2 多线程环境实现原理

1.2.1  ReentrantLock

ReentrantLock主要利用CAS+CLH队列来实现。它支持公平锁和非公平锁,两者的实现类似。

  • CAS:Compare and Swap,比较并交换。CAS有3个操作数:内存值V、预期值A、要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。该操作是一个原子操作,被广泛的应用在Java的底层实现中。在Java中,CAS主要是由sun.misc.Unsafe这个类通过JNI调用CPU底层指令实现。
  • CLH队列:带头结点的双向非循环链表。

ReentrantLock的基本实现可以概括为:先通过CAS尝试获取锁。如果此时已经有线程占据了锁,那就加入CLH队列并且被挂起。当锁被释放之后,排在CLH队列队首的线程会被唤醒,然后CAS再次尝试获取锁。在这个时候,如果:

  • 非公平锁:如果同时还有另一个线程进来尝试获取,那么有可能会让这个线程抢先获取;
  • 公平锁:如果同时还有另一个线程进来尝试获取,当它发现自己不是在队首的话,就会排到队尾,由队首的线程获取到锁。

下面分析下两个片段:

inal boolean nonfAIrTryAcquire(int acquires) {
   final Thread current = Thread.currentThread();
   int c = getState();
   if (c == 0) {
       if (compareAndSetState(0, acquires)) {
           setExclusiveOwnerThread(current);
           return true;
       }
   }
   else if (current == getExclusiveOwnerThread()) {
       int nextc = c + acquires;
       if (nextc < 0) // overflow
           throw new Error("Maximum lock count exceeded");
       setState(nextc);
       return true;
   }
   return false;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.

在尝试获取锁的时候,会先调用上面的方法。如果状态为0,则表明此时无人占有锁。此时尝试进行set,一旦成功,则成功占有锁。如果状态不为0,再判断是否是当前线程获取到锁。如果是的话,将状态+1,因为此时就是当前线程,所以不用CAS。这也就是可重入锁的实现原理。

final boolean acquireQueued(final Node node, int arg) {
   boolean failed = true;
   try {
       boolean interrupted = false;
       for (;;) {
           final Node p = node.predecessor();
           if (p == head && tryAcquire(arg)) {
               setHead(node);
               p.next = null; // help GC
               failed = false;
               return interrupted;
           }
           if (shouldParkAfterFailedAcquire(p, node) &&
               parkAndCheckInterrupt())
               interrupted = true;
       }
   } finally {
       if (failed)
           cancelAcquire(node);
   }
}
private final boolean parkAndCheckInterrupt() {
   LockSupport.park(this);
   return Thread.interrupted();
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.

该方法是在尝试获取锁失败加入CHL队尾之后,如果发现前序节点是head,则CAS再尝试获取一次。否则,则会根据前序节点的状态判断是否需要阻塞。如果需要阻塞,则调用LockSupport的park方法阻塞该线程。

1.2.2  synchronized

在Java语言中存在两种内建的synchronized语法:synchronized语句、synchronized方法。

  • synchronized语句:当源代码被编译成字节码的时候,会在同步块的入口位置和退出位置分别插入monitorenter和monitorexit字节码指令;
  • synchronized方法:在Class文件的方法表中将该方法的access_flags字段中的synchronized标志位置1。这个在specification中没有明确说明。

通过上面的一些了解,我们可以概括出解决互斥性问题,即资源抢占的基本方式为:

对共享资源的操作前后(进入退出临界区)加解锁,保证不同线程或进程可以互斥有序的操作资源。

加解锁方式,有显式的加解锁,如ReentrantLock或信号量;也有隐式的加解锁,如synchronized。那么在分布式环境中,为了保证不同JVM不同主机间不会出现资源抢占,那么同样只要对临界区加解锁就可以了。

然而在多线程和多进程中,锁已经有比较完善的实现,直接使用即可。但是在分布式环境下,就需要我们自己来实现分布式锁。

1.3 分布式环境下的解决方案-分布式锁

1.3.1 分布式锁条件

再回顾下多线程和多进程环境下的锁,可以发现锁的实现有很多共通之处,它们都需要满足一些最基本的条件:

1.    需要有存储锁的空间,并且锁的空间是可以访问到的。

2.    锁需要被唯一标识。

3.    锁要有至少两种状态。

仔细分析这三个条件:

存储空间

锁是一个抽象的概念,锁的实现,需要依存于一个可以存储锁的空间。在多线程中是内存,在多进程中是内存或者磁盘。更重要的是,这个空间是可以被访问到的。多线程中,不同的线程都可以访问到堆中的成员变量;在多进程中,不同的进程可以访问到共享内存中的数据或者存储在磁盘中的文件。但是在分布式环境中,不同的主机很难访问对方的内存或磁盘。这就需要一个都能访问到的外部空间来作为存储空间。

最普遍的外部存储空间就是数据库了,事实上也确实有基于数据库做分布式锁(行锁、version乐观锁),如quartz集群架构中就有所使用。除此以外,还有各式缓存如redis、Tair、Memcached、MongoDB,当然还有专门的分布式协调服务Zookeeper,甚至是另一台主机。只要可以存储数据、锁在其中可以被多主机访问到,那就可以作为分布式锁的存储空间。

唯一标识

不同的共享资源,必然需要用不同的锁进行保护,因此相应的锁必须有唯一的标识。在多线程环境中,锁可以是一个对象,那么对这个对象的引用便是这个唯一标识。多进程环境中,信号量在共享内存中也是由引用来作为唯一的标识。但是如果不在内存中,失去了对锁的引用,如何唯一标识它呢?上文提到的有名信号量,便是用硬盘中的文件名作为唯一标识。因此,在分布式环境中,只要给这个锁设定一个名称,并且保证这个名称是全局唯一的,那么就可以作为唯一标识。

至少两种状态

为了给临界区加锁和解锁,需要存储两种不同的状态。如ReentrantLock中的status,0表示没有线程竞争,大于0表示有线程竞争;信号量大于0表示可以进入临界区,小于等于0则表示需要被阻塞。因此只要在分布式环境中,锁的状态有两种或以上:如有锁、没锁;存在、不存在等,均可以实现。

有了这三个条件,基本就可以实现一个简单的分布式锁了。

下面以数据库为例,实现一个简单的分布式锁:

数据库表,字段为锁的ID(唯一标识),锁的状态(0表示没有被锁,1表示被锁)。

lock = MySQL.get(id);
while(lock.status == 1) {
   sleep(100);
}
mysql.update(lock.status = 1);
doSomething();
mysql.update(lock.status = 0);
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

问题

以上的方式即可以实现一个粗糙的分布式锁,但是这样的实现,有没有什么问题呢?

问题1:锁状态判断原子性无法保证

从读取锁的状态,到判断该状态是否为被锁,需要经历两步操作。如果不能保证这两步的原子性,就可能导致不止一个请求获取到了锁,这显然是不行的。因此,我们需要保证锁状态判断的原子性。

问题2:网络断开或主机宕机,锁状态无法清除

假设在主机已经获取到锁的情况下,突然出现了网络断开或者主机宕机,如果不做任何处理该锁将仍然处于被锁定的状态。那么之后所有的请求都无法再成功抢占到这个锁。因此,我们需要在持有锁的主机宕机或者网络断开的时候,及时的释放掉这把锁。

问题3:无法保证释放的是自己上锁的那把锁

在解决了问题2的情况下再设想一下,假设持有锁的主机A在临界区遇到网络抖动导致网络断开,分布式锁及时的释放掉了这把锁。之后,另一个主机B占有了这把锁,但是此时主机A网络恢复,退出临界区时解锁。由于都是同一把锁,所以A就会将B的锁解开。此时如果有第三个主机尝试抢占这把锁,也将会成功获得。因此,我们需要在解锁时,确定自己解的这个锁正是自己锁上的。

进阶条件

如果分布式锁的实现,还能再解决上面的三个问题,那么就可以算是一个相对完整的分布式锁了。然而,在实际的系统环境中,还会对分布式锁有更高级的要求。

1.    可重入:线程中的可重入,指的是外层函数获得锁之后,内层也可以获得锁,ReentrantLock和synchronized都是可重入锁;衍生到分布式环境中,一般仍然指的是线程的可重入,在绝大多数分布式环境中,都要求分布式锁是可重入的。

2.    惊群效应(Herd Effect):在分布式锁中,惊群效应指的是,在有多个请求等待获取锁的时候,一旦占有锁的线程释放之后,如果所有等待的方都同时被唤醒,尝试抢占锁。但是这样的情况会造成比较大的开销,那么在实现分布式锁的时候,应该尽量避免惊群效应的产生。

3.    公平锁和非公平锁:不同的需求,可能需要不同的分布式锁。非公平锁普遍比公平锁开销小。但是业务需求如果必须要锁的竞争者按顺序获得锁,那么就需要实现公平锁。

4.    阻塞锁和自旋锁:针对不同的使用场景,阻塞锁和自旋锁的效率也会有所不同。阻塞锁会有上下文切换,如果并发量比较高且临界区的操作耗时比较短,那么造成的性能开销就比较大了。但是如果临界区操作耗时比较长,一直保持自旋,也会对CPU造成更大的负荷。

保留以上所有问题和条件,我们接下来看一些比较典型的实现方案。

1.3.2 分布式锁的典型实现

ZooKeeper的实现

ZooKeeper(以下简称"ZK")中有一种节点叫做顺序节点,假如我们在/lock/目录下创建3个节点,ZK集群会按照发起创建的顺序来创建节点,节点分别为/lock/0000000001、/lock/0000000002、/lock/0000000003。

ZK中还有一种名为临时节点的节点,临时节点由某个客户端创建,当客户端与ZK集群断开连接,则该节点自动被删除。EPHEMERAL_SEQUENTIAL为临时顺序节点。

根据ZK中节点是否存在,可以作为分布式锁的锁状态,以此来实现一个分布式锁,下面是分布式锁的基本逻辑:

  • 客户端调用create()方法创建名为"/dlm-locks/lockname/lock-"的临时顺序节点。
  • 客户端调用getChildren("lockname")方法来获取所有已经创建的子节点。
  • 客户端获取到所有子节点path之后,如果发现自己在步骤1中创建的节点是所有节点中序号最小的,那么就认为这个客户端获得了锁。
  • 如果创建的节点不是所有节点中需要最小的,那么则监视比自己创建节点的序列号小的最大的节点,进入等待。直到下次监视的子节点变更的时候,再进行子节点的获取,判断是否获取锁。

释放锁的过程相对比较简单,就是删除自己创建的那个子节点即可,不过也仍需要考虑删除节点失败等异常情况。

Redis的实现

Redis的分布式缓存特性使其成为了分布式锁的一种基础实现。通过Redis中是否存在某个锁ID,则可以判断是否上锁。为了保证判断锁是否存在的原子性,保证只有一个线程获取同一把锁,Redis有SETNX(即SET if Not

eXists)和GETSET(先写新值,返回旧值,原子性操作,可以用于分辨是不是首次操作)操作。

为了防止主机宕机或网络断开之后的死锁,Redis没有ZK那种天然的实现方式,只能依赖设置超时时间来规避。

以下是一种比较普遍但不太完善的Redis分布式锁的实现步骤(与下图一一对应):

  • 线程A发送SETNX lock.orderid尝试获得锁,如果锁不存在,则set并获得锁。
  • 如果锁存在,则再判断锁的值(时间戳)是否大于当前时间,如果没有超时,则等待一下再重试。
  • 如果已经超时了,在用GETSET lock.{orderid}来尝试获取锁,如果这时候拿到的时间戳仍旧超时,则说明已经获得锁了。
  • 如果在此之前,另一个线程C快一步执行了上面的操作,那么A拿到的时间戳是个未超时的值,这时A没有如期获得锁,需要再次等待或重试。

该实现还有一个需要考虑的问题是全局时钟问题,由于生产环境主机时钟不能保证完全同步,对时间戳的判断也可能会产生误差。

2、幂等性问题

幂等(idempotent)是一个数学与计算机科学概念,常见于抽象代数中。

所谓幂等,简单地说,就是对接口的多次调用所产生的结果和调用一次是一致的,多次调用方法或者接口不会改变业务状态,可以保证重复调用的结果和单次调用的结果一致。扩展一下,这里的接口,可以理解为对外发布的HTTP接口或者dubbo接口,也可以是接收消息的内部接口,甚至是一个内部方法或操作。使用幂等性的场景有如下:

1.  前端重复提交,如在App中下订单的时候,点击确认之后,没反应,就又点击了几次。在这种情况下,如果无法保证该接口的幂等性,那么将会出现重复下单问题。

2.接口超时重试,对于给第三方调用的接口,有可能会因为网络原因而调用失败,这时,一般在设计的时候会对接口调用加上失败重试的机制。如果第一次调用已经执行了一半时,发生了网络异常。这时再次调用时就会因为脏数据的存在而出现调用异常。

3.消息重复消费,在使用消息中间件来处理消息队列,且手动 ack 确认消息被正常消费时。如果消费者突然断开连接,那么已经执行了一半的消息会重新放回队列。当消息被其他消费者重新消费时,如果没有幂等性,就会导致消息重复消费时结果异常,如数据库重复数据,数据库数据冲突,资源重复等。

在分布式环境中,网络环境更加复杂,因前端操作抖动、网络故障、消息重复、响应速度慢等原因,对接口的重复调用概率会比集中式环境下更大,尤其是重复消息在分布式环境中很难避免。以下是幂等控制的集中解决方案:

2.1 token 机制实现

通过token 机制实现接口的幂等性,这是一种比较通用性的实现方法。

示意图如下:

图片

具体流程步骤:

1.    客户端会先发送一个请求去获取 token,服务端会生成一个全局唯一的 ID 作为 token 保存在 redis 中,同时把这个 ID 返回给客户端。

2.    客户端第二次调用业务请求的时候必须携带这个 token。

3.    服务端会校验这个 token,如果校验成功,则执行业务,并删除 redis 中的 token。

4.    如果校验失败,说明 redis 中已经没有对应的 token,则表示重复操作,直接返回指定的结果给客户端

2.2 基于 mysql 实现

这种实现方式是利用 mysql 唯一索引的特性。示意图如下:

图片

具体流程步骤:

1.    建立一张去重表,其中某个字段需要建立唯一索引

2.    客户端去请求服务端,服务端会将这次请求的一些信息插入这张去重表中

3.    因为表中某个字段带有唯一索引,如果插入成功,证明表中没有这次请求的信息,则执行后续的业务逻辑

4.    如果插入失败,则代表已经执行过当前请求,直接返回。

2.3 基于 redis 实现

这种实现方式是基于 SETNX 命令实现的。

SETNX key value:将 key 的值设为 value ,当且仅当 key 不存在。若给定的 key 已经存在,则 SETNX 不做任何动作。该命令在设置成功时返回 1,设置失败时返回 0。示意图如下:

图片

具体流程步骤:

1.    客户端先请求服务端,会拿到一个能代表这次请求业务的唯一字段

2.    将该字段以 SETNX 的方式存入 redis 中,并根据业务设置相应的超时时间

3.    如果设置成功,证明这是第一次请求,则执行后续的业务逻辑

4.    如果设置失败,则代表已经执行过当前请求,直接返回

3、结语

在分布式环境中,操作互斥性问题和幂等性问题非常普遍。经过分析,我们找出了解决这两个问题的基本思路和实现原理,并给出了具体的解决方案。

针对操作互斥性问题,常见的做法便是通过分布式锁来处理对共享资源的抢占。分布式锁的实现,很大程度借鉴了多线程和多进程环境中的互斥锁的实现原理。只要满足一些存储方面的基本条件,并且能够解决如网络断开等异常情况,那么就可以实现一个分布式锁。

针对操作幂等性问题,我们可以通过防止重复操作来间接的实现接口的幂等性,这几种实现幂等的方式其实都是大同小异的。总之,当你去设计一个接口的时候,幂等都是首要考虑的问题,特别是当你负责设计转账、支付这种涉及到 money 的接口,都需要重点设计接口操作的幂等性问题。



Tags:分布式系统   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
负载均衡在大规模分布式系统中的应用:解决性能瓶颈
随着互联网的快速发展,大规模分布式系统在各行各业得到了广泛应用。这些系统需要处理大量的请求和数据,面临着性能瓶颈的挑战。负载均衡作为一种关键的技术手段,可以帮助大规模...【详细内容】
2023-11-14  Search: 分布式系统  点击:(299)  评论:(0)  加入收藏
分布式系统中的数据访问设计模式
在大多数具有简单查询的单体系统中,所有必要的数据可以在单个数据库调用中检索。然而,当数据分散到由不同服务拥有的单独的数据库或模式中时,读操作的数据访问开始变得困难。示...【详细内容】
2023-11-07  Search: 分布式系统  点击:(317)  评论:(0)  加入收藏
如何为分布式系统设计数据库
译者 | 李睿审校 | 重楼数据库设计是微服务和云原生解决方案中的一个关键因素,因为基于微服务的架构会导致出现分布式数据。多个进程可以操作数据,而不是在单个进程中进行数据...【详细内容】
2023-10-16  Search: 分布式系统  点击:(200)  评论:(0)  加入收藏
数据复制:构建大规模分布式系统的关键组成部分
数据复制对于构建可靠的大规模分布式系统至关重要。在本期中,我们将探讨常见的复制策略以及选择合适策略的关键因素。在本期中,我们将以数据库为例进行讨论。请注意,复制不仅适...【详细内容】
2023-09-13  Search: 分布式系统  点击:(297)  评论:(0)  加入收藏
EasyNetQ库:让你的分布式系统消息开发快人一步!
EasyNetQ库是一款优秀的消息传递库,它提供了易用性高、可扩展性强、性能高效的特点,被广泛应用于分布式系统中的事件驱动架构、微服务和高并发下的任务队列等场景。然而,对于不...【详细内容】
2023-08-28  Search: 分布式系统  点击:(280)  评论:(0)  加入收藏
Raft算法:保障分布式系统共识的稳健之道
Raft算法是一种简洁而高效的分布式一致性算法,通过引入Leader选举和日志复制的机制,确保了分布式系统的共识和一致性。它具有易于理解和实现的优点,被广泛应用于各种分布式系统...【详细内容】
2023-08-03  Search: 分布式系统  点击:(367)  评论:(0)  加入收藏
分布式系统中的CAP理论
对于刚刚接触分布式系统的小伙伴们来说,一提起分布式系统,就感觉高大上,深不可测。而且看了很多书和视频还是一脸懵逼。这篇文章主要使用大白话的方式,带你理解一下分布式系统中...【详细内容】
2023-08-03  Search: 分布式系统  点击:(231)  评论:(0)  加入收藏
分布式系统常见理论讲解
分布式系统是指由多个节点通过网络进行通信和协作的系统,它具有高可用性、高扩展性、高性能等优点,但也面临着一些挑战,如数据一致性、容错性、负载均衡等。为了解决这些问题,分...【详细内容】
2023-07-13  Search: 分布式系统  点击:(175)  评论:(0)  加入收藏
分布式系统设计中的并发访问解决方案
在分布式环境中,操作互斥性问题和幂等性问题非常普遍。经过分析,我们找出了解决这两个问题的基本思路和实现原理,并给出了具体的解决方案。0、引言随着互联网信息技术的飞速发...【详细内容】
2023-05-18  Search: 分布式系统  点击:(383)  评论:(0)  加入收藏
在分布式系统中,SpringBoot 实现接口幂等性
在分布式系统中,接口幂等性是一个非常重要的概念,它保证了在同样的条件下,同一请求的多次执行所产生的效果都是相同的。在实际开发中,为了防止重复提交或者重复操作带来的问题,我...【详细内容】
2023-03-07  Search: 分布式系统  点击:(219)  评论:(0)  加入收藏
▌简易百科推荐
对于微服务架构监控应该遵守的原则
随着软件交付方式的变革,微服务架构的兴起使得软件开发变得更加快速和灵活。在这种情况下,监控系统成为了微服务控制系统的核心组成部分。随着软件的复杂性不断增加,了解系统的...【详细内容】
2024-04-03  步步运维步步坑    Tags:架构   点击:(5)  评论:(0)  加入收藏
大模型应用的 10 种架构模式
作者 | 曹洪伟在塑造新领域的过程中,我们往往依赖于一些经过实践验证的策略、方法和模式。这种观念对于软件工程领域的专业人士来说,已经司空见惯,设计模式已成为程序员们的重...【详细内容】
2024-03-27    InfoQ  Tags:架构模式   点击:(13)  评论:(0)  加入收藏
哈啰云原生架构落地实践
一、弹性伸缩技术实践1.全网容器化后一线研发的使用问题全网容器化后一线研发会面临一系列使用问题,包括时机、容量、效率和成本问题,弹性伸缩是云原生容器化后的必然技术选择...【详细内容】
2024-03-27  哈啰技术  微信公众号  Tags:架构   点击:(10)  评论:(0)  加入收藏
DDD 与 CQRS 才是黄金组合
在日常工作中,你是否也遇到过下面几种情况: 使用一个已有接口进行业务开发,上线后出现严重的性能问题,被老板当众质疑:“你为什么不使用缓存接口,这个接口全部走数据库,这怎么能扛...【详细内容】
2024-03-27  dbaplus社群    Tags:DDD   点击:(12)  评论:(0)  加入收藏
高并发架构设计(三大利器:缓存、限流和降级)
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。引言1.高并发背景互联网行业迅速发展,用户量剧...【详细内容】
2024-03-13    阿里云开发者  Tags:高并发   点击:(6)  评论:(0)  加入收藏
如何判断架构设计的优劣?
架构设计的基本准则是非常重要的,它们指导着我们如何构建可靠、可维护、可测试的系统。下面是这些准则的转换表达方式:简单即美(KISS):KISS原则的核心思想是保持简单。在设计系统...【详细内容】
2024-02-20  二进制跳动  微信公众号  Tags:架构设计   点击:(36)  评论:(0)  加入收藏
详解基于SpringBoot的WebSocket应用开发
在现代Web应用中,实时交互和数据推送的需求日益增长。WebSocket协议作为一种全双工通信协议,允许服务端与客户端之间建立持久性的连接,实现实时、双向的数据传输,极大地提升了用...【详细内容】
2024-01-30  ijunfu  今日头条  Tags:SpringBoot   点击:(16)  评论:(0)  加入收藏
PHP+Go 开发仿简书,实战高并发高可用微服务架构
来百度APP畅享高清图片//下栽のke:chaoxingit.com/2105/PHP和Go语言结合,可以开发出高效且稳定的仿简书应用。在实现高并发和高可用微服务架构时,我们可以采用一些关键技术。首...【详细内容】
2024-01-14  547蓝色星球    Tags:架构   点击:(115)  评论:(0)  加入收藏
GraalVM与Spring Boot 3.0:加速应用性能的完美融合
在2023年,SpringBoot3.0的发布标志着Spring框架对GraalVM的全面支持,这一支持是对Spring技术栈的重要补充。GraalVM是一个高性能的多语言虚拟机,它提供了Ahead-of-Time(AOT)编...【详细内容】
2024-01-11    王建立  Tags:Spring Boot   点击:(124)  评论:(0)  加入收藏
Spring Boot虚拟线程的性能还不如Webflux?
早上看到一篇关于Spring Boot虚拟线程和Webflux性能对比的文章,觉得还不错。内容较长,抓重点给大家介绍一下这篇文章的核心内容,方便大家快速阅读。测试场景作者采用了一个尽可...【详细内容】
2024-01-10  互联网架构小马哥    Tags:Spring Boot   点击:(115)  评论:(0)  加入收藏
站内最新
站内热门
站内头条