您当前的位置:首页 > 电脑百科 > 程序开发 > 框架

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse

时间:2023-09-05 11:25:11  来源:机器之心  作者:

作者:MMLab@NTU

来自南洋理工大学和商汤科技的研究者联合提出了一种全新的文本驱动动作生成框架——ReMoDiffuse。

人体动作生成任务旨在生成逼真的人体动作序列,以满足娱乐、虚拟现实、机器人技术等领域的需求。传统的生成方法包括 3D 角色创建、关键帧动画和动作捕捉等步骤,其存在诸多限制,如耗时较长,需要专业技术知识,涉及昂贵的系统和软件,不同软硬件系统之间可能存在兼容性问题等。随着深度学习的发展,人们开始尝试使用生成模型来实现人体动作序列的自动生成,例如通过输入文本描述,要求模型生成与文本要求相匹配的动作序列。随着扩散模型被引入这个领域,生成动作与给定文本的一致性不断提高。

然而,生成动作的自然程度离使用需求仍有很大差距。为了进一步提升人体动作生成算法的能力,本文在 MotionDiffuse [1] 的基础上提出了 ReMoDiffuse 算法(图 1),通过利用检索策略,找到高相关性的参考样本,提供细粒度的参考特征,从而生成更高质量的动作序列。

  • 论文链接:https://arxiv.org/pdf/2304.01116.pdf
  • Github:https://github.com/mingyuan-zhang/ReMoDiffuse
  • 项目主页:https://mingyuan-zhang.github.io/projects/ReMoDiffuse.html

通过巧妙地将扩散模型和创新的检索策略融合,ReMoDiffuse 为文本指导的人体动作生成注入了新的生命力。经过精心构思的模型结构,ReMoDiffuse 不仅能够创造出丰富多样、真实度高的动作序列,还能有效地满足各种长度和多粒度的动作需求。实验证明,ReMoDiffuse 在动作生成领域的多个关键指标上表现出色,显著地超越了现有算法。

图 1. ReMoDiffuse 概览

方法介绍

ReMoDiffuse 主要由两个阶段组成:检索和扩散。在检索阶段,ReMoDiffuse 使用混合检索技术,基于用户输入文本以及预期动作序列长度,从外部的多模态数据库中检索出信息丰富的样本,为动作生成提供强有力的指导。在扩散阶段,ReMoDiffuse 利用检索阶段检索到的信息,通过高效的模型结构,生成与用户输入语义一致的运动序列。

为了确保高效的检索,ReMoDiffuse 为检索阶段精心设计了以下数据流(图 2):

图 2:ReMoDiffuse 的检索阶段

扩散过程(图3.c)由正向过程和逆向过程两个部分组成。在正向过程中,ReMoDiffuse 逐步将高斯噪声添加到原始动作数据中,并最终将其转化为随机噪声。逆向过程专注于除去噪声并生成逼真的动作样本。从一个随机高斯噪声开始,ReMoDiffuse 在逆向过程中的每一步都使用语义调制模块(SMT)(图3.a)来估测真实分布,并根据条件信号来逐步去除噪声。这里 SMT 中的 SMA 模块将会将所有的条件信息融入到生成的序列特征中,是本文提出的核心模块。

图 3:ReMoDiffuse 的扩散阶段

3.V 向量提供了动作生成所需的实际特征。类似 K 向量,这里 V 向量也综合考虑了检索样本、用户输入以及当前动作序列。考虑到检索样本的文本描述特征与生成的动作之间没有直接关联,因此在计算 V 向量时我们选择不使用这一特征,以避免不必要的信息干扰。

结合 Efficient Attention 的全局注意力模板机制,SMA 层利用来自检索样本的辅助信息、用户文本的语义信息以及待去噪序列的特征信息,建立起一系列综合性的全局模板,使得所有条件信息能够被待生成序列充分吸收。

实验及结果

我们在两个数据集 HumanML3D [4] 和 KIT-ML [5] 上评估了 ReMoDiffuse。在与文本的一致性与动作质量两个角度上,实验结果(表 1、2)展示了我们提出的 ReMoDiffuse 框架的强大性能和优势。

表 1. 不同方法在 HumanML3D 测试集上的表现

表 2. 不同方法在 KIT-ML 测试集上的表现

以下是一些能定性展示 ReMoDiffuse 的强大性能的示例(图 4)。与之前的方法相比,例如,在给定文本 “一个人在圆圈里跳跃” 时,只有 ReMoDiffuse 能够准确捕捉到 “跳跃” 动作和 “圆圈” 路径。这表明 ReMoDiffuse 能够有效地捕捉文本细节,并将内容与给定的运动持续时间对齐。

图 4. ReMoDiffuse 生成的动作序列与其他方法生成的动作序列的比较

我们对 Guo 等人的方法 [4]、MotionDiffuse [1]、MDM [6] 以及 ReMoDiffuse 所生成的相应动作序列进行了可视化展示,并以问卷形式收集测试参与者的意见。结果的分布情况如图 5 所示。从结果中可以清晰地看出,在大多数情况下,参与测试者认为我们的方法 —— 即 ReMoDiffuse 所生成的动作序列在四个算法中最贴合所给的文本描述,也最自然流畅。

图 5:用户调研的结果分布

引用

[1] Mingyuan Zhang, Zhongang CAI, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. arXiv preprint arXiv:2208.15001, 2022.

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[3] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on Applications of computer vision, pages 3531–3539, 2021.

[4] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5152–5161, 2022.

[5] Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. Big data, 4 (4):236–252, 2016.

[6] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. Human motion diffusion model. In The Eleventh International Conference on Learning Representations, 2022



Tags:ReMoDiffuse   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse
作者:MMLab@NTU来自南洋理工大学和商汤科技的研究者联合提出了一种全新的文本驱动动作生成框架——ReMoDiffuse。人体动作生成任务旨在生成逼真的人体动作序列,以满...【详细内容】
2023-09-05  Search: ReMoDiffuse  点击:(363)  评论:(0)  加入收藏
▌简易百科推荐
Web Components实践:如何搭建一个框架无关的AI组件库
一、让人又爱又恨的Web ComponentsWeb Components是一种用于构建可重用的Web元素的技术。它允许开发者创建自定义的HTML元素,这些元素可以在不同的Web应用程序中重复使用,并且...【详细内容】
2024-04-03  京东云开发者    Tags:Web Components   点击:(8)  评论:(0)  加入收藏
Kubernetes 集群 CPU 使用率只有 13% :这下大家该知道如何省钱了
作者 | THE STACK译者 | 刘雅梦策划 | Tina根据 CAST AI 对 4000 个 Kubernetes 集群的分析,Kubernetes 集群通常只使用 13% 的 CPU 和平均 20% 的内存,这表明存在严重的过度...【详细内容】
2024-03-08  InfoQ    Tags:Kubernetes   点击:(12)  评论:(0)  加入收藏
Spring Security:保障应用安全的利器
SpringSecurity作为一个功能强大的安全框架,为Java应用程序提供了全面的安全保障,包括认证、授权、防护和集成等方面。本文将介绍SpringSecurity在这些方面的特性和优势,以及它...【详细内容】
2024-02-27  风舞凋零叶    Tags:Spring Security   点击:(53)  评论:(0)  加入收藏
五大跨平台桌面应用开发框架:Electron、Tauri、Flutter等
一、什么是跨平台桌面应用开发框架跨平台桌面应用开发框架是一种工具或框架,它允许开发者使用一种统一的代码库或语言来创建能够在多个操作系统上运行的桌面应用程序。传统上...【详细内容】
2024-02-26  贝格前端工场    Tags:框架   点击:(47)  评论:(0)  加入收藏
Spring Security权限控制框架使用指南
在常用的后台管理系统中,通常都会有访问权限控制的需求,用于限制不同人员对于接口的访问能力,如果用户不具备指定的权限,则不能访问某些接口。本文将用 waynboot-mall 项目举例...【详细内容】
2024-02-19  程序员wayn  微信公众号  Tags:Spring   点击:(39)  评论:(0)  加入收藏
开发者的Kubernetes懒人指南
你可以将本文作为开发者快速了解 Kubernetes 的指南。从基础知识到更高级的主题,如 Helm Chart,以及所有这些如何影响你作为开发者。译自Kubernetes for Lazy Developers。作...【详细内容】
2024-02-01  云云众生s  微信公众号  Tags:Kubernetes   点击:(50)  评论:(0)  加入收藏
链世界:一种简单而有效的人类行为Agent模型强化学习框架
强化学习是一种机器学习的方法,它通过让智能体(Agent)与环境交互,从而学习如何选择最优的行动来最大化累积的奖励。强化学习在许多领域都有广泛的应用,例如游戏、机器人、自动驾...【详细内容】
2024-01-30  大噬元兽  微信公众号  Tags:框架   点击:(67)  评论:(0)  加入收藏
Spring实现Kafka重试Topic,真的太香了
概述Kafka的强大功能之一是每个分区都有一个Consumer的偏移值。该偏移值是消费者将读取的下一条消息的值。可以自动或手动增加该值。如果我们由于错误而无法处理消息并想重...【详细内容】
2024-01-26  HELLO程序员  微信公众号  Tags:Spring   点击:(84)  评论:(0)  加入收藏
SpringBoot如何实现缓存预热?
缓存预热是指在 Spring Boot 项目启动时,预先将数据加载到缓存系统(如 Redis)中的一种机制。那么问题来了,在 Spring Boot 项目启动之后,在什么时候?在哪里可以将数据加载到缓存系...【详细内容】
2024-01-19   Java中文社群  微信公众号  Tags:SpringBoot   点击:(86)  评论:(0)  加入收藏
花 15 分钟把 Express.js 搞明白,全栈没有那么难
Express 是老牌的 Node.js 框架,以简单和轻量著称,几行代码就可以启动一个 HTTP 服务器。市面上主流的 Node.js 框架,如 Egg.js、Nest.js 等都与 Express 息息相关。Express 框...【详细内容】
2024-01-16  程序员成功  微信公众号  Tags:Express.js   点击:(86)  评论:(0)  加入收藏
相关文章
    无相关信息
站内最新
站内热门
站内头条