来源:Datawhale
这是一篇关于如何成为一名 AI 算法工程师的长文~
经常有朋友私信问,如何学 Python 呀,如何敲代码呀,如何进入 AI 行业呀?
正好回头看看自己这一年走过的路,进行一次经验总结。
来看看你距离成为一名 AI 工程师还有多远吧~
⭐具体内容:
⭐声明:
我是因为什么开始接触敲代码?
我的第一个模型是什么?
由于本科是数学,研究生是量化分析,第一份实习是一家金融科技公司,开始接触所谓的「Fintech」
第一个任务就是做客户的信用评分卡模型,目的给每个用户打一个信用分数,类似支付宝的芝麻信用分。这是银行标配的一个模型,最常见最传统的算法用的就是逻辑回归。
在课堂上使用的工具是 SAS,SPSS,属于有操作界面的,菜单非常齐全,只需要鼠标点一点就能建模,很好上手。但是 SAS 这些要付钱的,年费还是相当的贵,所以深圳大部分公司进行数据分析和建模工作都选择开源免费的 R 语言或者 Python。这就体现了掌握一门编程语言的重要性。
虽然说是建模任务,但是前三个月跟建模基本都扯不上边。都在做数据清洗,表格整理(摊手),都在 library 各种包,用的最多的可能是 data.table 和 dplyr。没办法,很多模型都有包可以直接调用,是最简单的环节了。
其实一开始,我一直在犯很低级的错误,各种报错,没有 library 啦,标点符号没打对啦,各种很 low 的错误犯了一次又一次,而且连报错的内容都不会看,不知道怎么去改正。如果你也像我一样,真的请不要灰心,我就是这样走过来的。对着错误一个个去解决就好了~
当时什么都不知道的时候,觉得真难呀,每个环节都有那么多细节要照顾,要学的那么多,做完一个还有一个,还要理解业务含义。但是当完整的做一遍之后再回头,就会觉得,其实,也没那么难嘛~
敲代码容易吗?
因为我不是计算机专业的,所以基本上属于没怎么敲过代码的那种。
后来发现程序员也有好多种类的,前端后端等,因此敲的代码种类也很多,才会有几十种的编程语言,下图是一些这几年的主流语言。
实习时我一直被队友嫌弃很蠢,而且一开始敲的东西怎么也运行不通,运行出来的都是鬼结果。有 n 次想放弃的念头,「我干嘛一定要敲这玩意儿?」,但也有 n+1 次想坚持的理由,因为我真的喜欢我正在做的事。为什么用「坚持」,因为真的不容易。不难,但真的需要有耐心。
一开始我的状态就是一行行代码的运行,一个个命令的熟悉,反复看,反复运行。
从一年前的「什么是过拟合,什么是交叉检验,损失函数有哪些」到后来参加全球人工智能峰会时都能听懂的七七八八,会觉得,努力没有白费呀!
可以看出,经过前面的积累,后面会学的越来越快。
慢慢的就从一开始的那种「唉,怎么又报错啊,好挫败」的心态变成现在的「啊?没 error?感觉不对啊,再查验一遍吧」这种抖 M 倾向的人。代码虐我千百遍,我已经被磨的没有了脾气。
已经有几个朋友说想转行了,我何曾没想过,只是不知不觉中坚持了下来而已。因为热爱,越虐越停不下来
小结
设定一个非常清晰的目标
为什么第一个写:「我是因为什么开始敲代码的」,因为动机真的非常重要!
所以,很多人在问我「如何学 python?」这种问题时,我的第一回答都是「你学 python 用来干嘛?」
在学校也敲打过 python,做个爬虫 demo 什么的,因为目的性不强没多久就放一边了。清晰的目标就比如说你要做 NLP,你要知道 NLP 的应用有智能问答,机器翻译,搜索引擎等等。
然后如果你要做智能问答你要知道现在最发达的技术是深度学习,使用的算法有 RNN/LSTM/Seq2Seq/等等一系列。
而我的清晰目标是在实习的时候给我的任务。当任务很明确的时候,所需要的语言就明确了,所要学习的算法也就明确了,很多东西就顺理成章了不用一头乱撞了。
从金融到科技
AI 的应用范围很广,每一个研究方向都是无穷尽的。由于金融公司很少与图像处理,NLP 等技术会有交集,而我强大的好奇心让我决定去纯粹的科技公司一探究竟。目前已投身于智能家居,目标是 Javis
⚡人工智能/机器学习/深度学习
我经常在公交的广告牌上看见这些词,好像哪家公司没有这个技术就落后了似的。更多的还有强化学习,迁移学习,增量学习等各种学习。
这些词儿之间到底什么关系?
机器学习是人工智能的一种,深度学习是机器学习的一种。学 AI 先学机器学习。
计算机的「算法」与 数学的「算法」的区别
理论知识对于 AI 算法工程师极其重要。敲代码只是思路的一个实现过程。这里的「算法」和计算机 CS 的「算法」还不太一样,AI 算法是偏数学推导的,所以数学底子还是需要点的,学的越深,要求越高。面试的时候,很少让手写代码,90% 都是在问模型抠算法细节。
在学校我是一个不爱记笔记的人,甚至是一个不爱上课的人。但是自从入了机器学习的坑后,笔记写的飞起~
机器学习的框架
按照数据集有没有 Y 值可以将机器学习分为监督学习、半监督学习和无监督学习。监督学习是分类算法,无监督学习是聚类算法。
机器学习的通用流程和相关技术如下图:
ML 这棵树还可以有更多的分支。先有个整体感受,再一个一个的解决掉。这里的知识点也是面试最爱问的几个,是重点呀!面试过的同学应该都不陌生了。
机器学习如何入门
机器学习之大,初学者都无从下手。说白了,机器学习就是各种模型做预测,那么就需要有数据,要想有好的效果,就要把原始的脏数据洗干净了才能用。数据内隐藏的信息有时候是肉眼不可见的,那么就需要一些相关技巧来把有用信息挖出来。所有绞尽脑汁使用的技巧,都是为了能预测的更准确。但是谁也没办法做到百分百的命中。
这里简单介绍下机器学习的三大块:传统的机器学习 ML、图像处理 CV、自然语言处理 NLP。
再推荐一个入门神器:
这是一个世界级的最权威的机器学习比赛,已被谷歌收购。上面的赛题不仅很有代表性,还有很多免费的优秀的数据集供你使用,要知道收集数据是机器学习的第一大难题,它就帮你解决了。入门不用立马参加比赛,把数据下载下来,尽情折腾就好了,要是没有思路,去网上搜别人的解题笔记和代码借鉴一下也很美好~因为这是大家都争相打榜的比赛,所以你并不孤单。
ML 入门该参加的赛题(Titanic)
图像入门该参加的赛题(数字识别)
NLP 入门该参加的赛题(情感分析、quora 问句语义匹配)
等做完第一个 titanic 的比赛应该就有点感觉了。上面 4 个比赛我都做过,觉得很经典,很适合入门。
深度学习的入门算法有哪些
如今的样本输入可以是文字,可以是图像,可以是数字。
深度学习是跟着图像处理火起来的。甚至现在这个概念都火过了「机器学习」。
深度学习的算法主要都是神经网络系列。入门推荐 CNN(卷积神经网络) 的一系列:
自学如何寻找学习资料?
开源的世界,美好的世界❤
「开源」,我的爱!代码届里开源的中心思想就是,share and free
对于机器学习,网上的社区氛围特别好,分享的很多很全面,而且 MLer 都非常乐于助人。
介绍几个我经常逛的社区,论坛,和网页:
kaggle(www.kaggle.com)
全球最权威的机器学习比赛,已被谷歌收购。赛题覆盖传统机器学习、nlp、图像处理等,而且都是很实际的问题,来自各行各业。kaggle 是数一数二完善的 ML 社区了,赛题开放的数据集就很有用,非常适合新手练手。对优秀的 kaggler 也提供工作机会。
github(www.github.com)
全球最大同性交友网站,适合搜项目,开源大社区,大家一起看星星,看 issue~
StackOverFlow(www.stackoverflow.com)
代码报错找它,代码不会敲找它!所有与代码相关的坑,基本都有人踩过啦
csdn(www.csdn.net)
最接地气的博客聚集地,最常看的网页之一,一般用来搜索细节知识点或者代码报错时
sklearn(scikit-learn.org/stable)
专业做机器学习 100 年!各算法各技巧的例子 code 应有尽有
medium(medium.com)
创办人是 Twitter 的创始人,推崇优质内容,国内很多 AI 公众大号的搬运都来自于这里,medium 里每个作者都有自己独特的见解,值得学习和开拓眼界,需要科学上网
towards data science(towardsdatascience.com)
与 medium 很像,需要科学上网
google AI blog(ai.googleblog.com)
谷歌的 AI 团队维护的博客,每天至少更新一篇技术博客。刚在上海开的谷歌开发者大会宣布将会免费开放机器学习课程,值得关注一下,毕竟是 AI 巨头
各种大神的技术博客/个人网站
有很多的网站,会不定期的更新在我的个人博客里
有口碑的 AI 公开课平台
首先说明我没有上课,也没有报班,属于个人学习习惯问题。但考虑到学习差异性,所以还是总结了口碑排名靠前的课程系列。前提,需要有一定数学基础,没有的可以顺便补一补。
coursera(www.coursera.org/browse)
吴恩达 (Andrew Ng) 机器学习
deeplearning.ai(www.deeplearning.ai)
fast.ai(www.fast.ai)
专注于深度学习。Fast.ai 的创始人就蛮有意思的,是横扫 kaggle 图像处理的高手,不摆架子,也不故弄玄虚。中心思想就是深度学习很简单,不要怕。fast.ai 有博客和社区。Jeremy 和 Rachel 鼓励撰写博客,构建项目,在会议中进行讨论等活动,以实力来代替传统证书的证明作用。
udacity(in.udacity.com)
有中文版,课程覆盖编程基础,机器学习,深度学习等。
网易云课堂
碎片时间
科技圈也是有潮流要赶的,等你入坑就知道。
追最新的论文,最新的算法,最新的比赛,以及 AI 圈的网红是哪些~有条件的开个 twitter,平时娱乐看看机器学习板块还是蛮有意思的,有很多自嘲的漫画~
推荐几个我超爱看的 AI 主题美剧
硅谷(强推!简直是我日常生活,太有共鸣了~下饭剧)
西部世界(看的时候不要学我一直在思考如何实现这个那个技术)
实用的小技巧
浏览器首推 chrome
当阅读英文网页呼吸困难时,右击选择「翻成中文(简体)」
考过雅思和 GMAT,曾经我也是一个热爱英文的孩子,如今跪倒在海量技术文档和文献里苟活
搜索问题一定用 google,如果没解决是你的问题不是 google 的锅
baidu???ummm...... 别为难我...... 很少用
学会提问很重要,搜索格式推荐
语言+问题,例如:python how to convert a list to a dataframe
直接复制错误信息,例如:ValueError: No variables to save...
请把所有的问题往上抛,网上查比问人快!总是问别人会引起关系破裂的~
学会顺藤摸瓜
当你读到一个非常不错的技术文档时,看完别急着关掉。这可能是一个个人网站,去观察菜单栏里有没有【About】选项。或者这也可能是一个优秀的社区,看看有没有【Home】选项,去看看 po 的其它的文章。
很多优秀网站都是英文,科学上网必不可少
学习费用不来自课程,可能来自于硬件要求,学生党要利用好学校资源
小结
虽然说了那么多,但还是要说请放弃海量资料!用多少,找多少就好了!(别把这句话当耳旁风)
资料不在量多而在于内容是有质量保证的。很多课程或者公众号只管塞知识,你有疑问它也解答不了的时候,这样出来的效果不好,就像一个模型只管训练,却不验证,就是耍流氓。
如何选择编程语言/框架
首选英语!!!(咳咳,我认真的)
说到底,语言只是工具,不去盲目的追求任何一种技术。根据任务来选择语言,不一样的程序员选择不一样的编程语言。很多人最后不是把重点放在能力而是炫工具,那就有点走偏了。
据观察,在机器学习组里 R 和 Python 是使用率最高的两门语言,一般你哪个用的顺就用哪个,只要能达到效果就行,除非强制规定。
我使用之后的感受是,人生苦短,我用 python
用 python 建个模型到底多难?
算法任务大致分为两种,一种是普通算法工程师做的「调包、调参」,另一种是高级算法工程师做的,可以自己创建一个算法或者能灵活修改别人的算法。
先说说建个模到底有多简单吧。
有优秀的算法封装框架
tensorflow / caffe / keras /...
Auto ML 是不可阻挡的一个方向
Auto ML(auto machine learning),自动机器学习。就是你只管丢进去数据,坐等跑出结果来就行了。前一阵子谷歌的 CloudML 炒的很火,愿景是让每个人都能建模,但毕竟这种服务是要钱的。所以我研究了下开源的 auto sklearn 框架的代码,发现了什么呢?建模到底有多简单呢?就,简单到 4 行代码就可能打败 10 年工作经验的建模师。
再说回来,如果你自己根本不知道自己在做什么,只能跑出来一个你不能负责的结果,就是很糟糕的,那还不是一个合格的算法工程师。你的模型必须像你亲生的那样。但是,只要你想,绝对能做到的!
学习 python 电脑上要装哪些东西
Anaconda
对,就是这么简单粗暴,装这个就 ok 了
学 python 的应该都会面临到底是 python2 还是 python3 的抉择吧。语言版本和环境真的很让人头疼,但是 Anaconda 惊艳到我了,就是可以自定义 python 环境,你可以左手 py2 右手 py3
推荐几个 python 的 IDE
Spyder
Anaconda 自带的 ide。界面排版与 Rstudio 和 Matlab 很相似。输入什么就输出什么结果,适合分析工作,我写小功能的时候很喜欢用。
Jupyter Notebook
Anaconda 自带的 ide,属于 web 界面的。当你程序跑在虚拟机,想调代码的时候适合用。
PyCharm
对于写项目的,或者代码走读的比较友好。当你需要写好多 python 文件互相 import 时,特别好用。
我的笔记本配置
(不考虑经济约束的请忽略这条)
牌子+型号:ThinkPad X1 Carbon
系统推荐:linux,因为开源,有空可以玩玩
校招/社招/实习/面试经验
如何安排校招
大厂的开放时间会比较早,密切关注网申时间节点:
手撕代码能力
建议提早半年开始准备。我的代码也是从实习开始敲起,敲了半年才觉得下手如有神哈哈。不要做没实际意义的课后题,也不要照着书本例题敲,敲完你就忘了,书本这些都是已经排除万难的东西,得不到什么成长。
入门修炼:全国大学生数学建模竞赛、全美大学生数学建模竞赛、kaggle、天池…
项目经历/实习经历
如果明确自己的职业方向为人工智能/数据挖掘类的,请不要浪费时间去申请其他与技术无关的实习。端茶送水,外卖跑腿,打印纸并不能帮你。当时由于身边同学都断断续续出去实习,面前有一份大厂行政的实习,我…竟然犹豫了一下,好在也还是拒绝了。
尽量选择大厂的技术实习,毕竟以后想进去会更难。但是不要因为一个月拿 3000 块就只干 3000 块的活。把整个项目跟下来,了解框架的架构,优化的方向,多去尝试,就算加班(加班在深圳很正常)也是你赚到,思考如何简化重复性工作,去尝试了解自己部门和其他部门的工作内容与方向,了解的越多你对自己想做的事情了解的也越多。
我实习做的评分卡模型,除了传统逻辑回归,也尝试新的 XGB 等等,而且虽然别人也在做,但是私下自己会把整个模型写一遍,包含数据清洗和模型调优等,这样对业务的了解也更透彻,面试起来所有的细节都是亲手做过的,也就比较顺了。
如果没有实习在手,世界给我们数据挖掘选手的大门还是敞开着的。kaggle 上有专门给数据挖掘入门者的练习场。相关的比赛还有很多,包括腾讯、阿里等大厂也时不时会发布算法大赛,目测这样的算法大赛只会越来越多,你坚持做完一个项目,你在平台上还可以得到相关名次,名次越靠前越有利哈哈哈这是废话。
BAT 常见的面试题(不分先后)
小结
问题是散的,知识是有关联的,学习的时候要从大框架学到小细节。
没事多逛逛招聘网站看看招聘需求,了解市场的需求到底是什么样的。时代变化很快,捕捉信息的能力要锻炼出来。你可以关注的点有:职业名/职业方向/需要会什么编程语言/需要会什么算法/薪资/...
每个面试的结尾,面试官会问你有没有什么想问的,请注意这个问题也很关键。
比如:这个小组目前在做什么项目/实现项目主要用什么语言和算法/…
尽量不要问加不加班,有没有加班费之类的,别问我为什么这么说(摊手)
在面试中遇到不理解的,比如 C++语法不懂,可以问这个 C++具体在项目中实现什么功能。如果你提出好问题,能再次引起面试官对你的兴趣,那就能增加面试成功率。
应届生就好好准备校招,别懒,别怕输,别怕被拒,从哪里跌倒从哪里起来。社招不是你能招呼的,会更挫败,因为你什么也没做过。
虽然是做技术的,但是日常 social 一下还是收益很大的。实习的时候,也要与周围同事和平相处,尤其是老大哥们,也许哪天他就帮你内推大厂去了。内推你能知道意想不到的信息,面试官,岗位需求,最近在做什么项目之类的。
挑选给你机会的公司,不要浪费自己的时间。不要每家都去,去之前了解这家公司与你的匹配度。
尤其社招,你一改动简历就很多人给你打电话,你要有策略的去进行面试,把握总结每个机会。像我就是东一榔头西一榔头的,好多都是止步于第一面,就没回信儿了,因为每次面完没有好好反思总结,等下次再遇到这问题还是抓瞎,十分消耗自己的时间和信心。