排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。
下面这个表格总结了各种排序算法的复杂度与稳定性:
各种排序算法复杂度比较.png
冒泡排序可谓是最经典的排序算法了,它是基于比较的排序算法,时间复杂度为O(n^2),其优点是实现简单,n较小时性能较好。
void bubble_sort(int arr[], int len) { for (int i = 0; i < len - 1; i++) { for (int j = len - 1; j > i; j--) { if (arr[j] < arr[j - 1]) { int temp = arr[j]; arr[j] = arr[j - 1]; arr[j - 1] = temp; } } } }
void select_sort(int arr[], int len) { for (int i = 0; i < len; i++) { int index = i; for (int j = i + 1; j < len; j++) { if (arr[j] < arr[index]) index = j; } if (index != i) { int temp = arr[i]; arr[i] = arr[index]; arr[index] = temp; } } }
void insert_sort(int arr[], int len) { for (int i = 1; i < len; i ++) { int j = i - 1; int k = arr[i]; while (j > -1 && k < arr[j] ) { arr[j + 1] = arr[j]; j --; } arr[j + 1] = k; } }
void quick_sort(int arr[], int left, int right) { if (left < right) { int i = left, j = right, target = arr[left]; while (i < j) { while (i < j && arr[j] > target) j--; if (i < j) arr[i++] = arr[j]; while (i < j && arr[i] < target) i++; if (i < j) arr[j] = arr[i]; } arr[i] = target; quick_sort(arr, left, i - 1); quick_sort(arr, i + 1, right); } }
void merge(int arr[], int temp_arr[], int start_index, int mid_index, int end_index) { int i = start_index, j = mid_index + 1; int k = 0; while (i < mid_index + 1 && j < end_index + 1) { if (arr[i] > arr[j]) temp_arr[k++] = arr[j++]; else temp_arr[k++] = arr[i++]; } while (i < mid_index + 1) { temp_arr[k++] = arr[i++]; } while (j < end_index + 1) temp_arr[k++] = arr[j++]; for (i = 0, j = start_index; j < end_index + 1; i ++, j ++) arr[j] = temp_arr[i]; } void merge_sort(int arr[], int temp_arr[], int start_index, int end_index) { if (start_index < end_index) { int mid_index = (start_index + end_index) / 2; merge_sort(arr, temp_arr, start_index, mid_index); merge_sort(arr, temp_arr, mid_index + 1, end_index); merge(arr, temp_arr, start_index, mid_index, end_index); } }
二叉堆
二叉堆是完全二叉树或者近似完全二叉树,满足两个特性
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。一般二叉树简称为堆。
堆的存储
一般都是数组来存储堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。存储结构如图所示:
堆结构.png
堆排序原理
堆排序的时间复杂度为O(nlogn)
/** * 将数组arr构建大根堆 * @param arr 待调整的数组 * @param i 待调整的数组元素的下标 * @param len 数组的长度 */ void heap_adjust(int arr[], int i, int len) { int child; int temp; for (; 2 * i + 1 < len; i = child) { child = 2 * i + 1; // 子结点的位置 = 2 * 父结点的位置 + 1 // 得到子结点中键值较大的结点 if (child < len - 1 && arr[child + 1] > arr[child]) child ++; // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点 if (arr[i] < arr[child]) { temp = arr[i]; arr[i] = arr[child]; arr[child] = temp; } else break; } } /** * 堆排序算法 */ void heap_sort(int arr[], int len) { int i; // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素 for (int i = len / 2 - 1; i >= 0; i--) { heap_adjust(arr, i, len); } for (i = len - 1; i > 0; i--) { // 将第1个元素与当前最后一个元素交换,保证当前的最后一个位置的元素都是现在的这个序列中最大的 int temp = arr[0]; arr[0] = arr[i]; arr[i] = temp; // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值 heap_adjust(arr, 0, i); } }