您当前的位置:首页 > 电脑百科 > 程序开发 > 算法

雪花算法详解与Java实现:分布式唯一ID生成原理

时间:2024-02-03 14:54:35  来源:微信公众号  作者: 一安未来

SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。

其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 ID,12 bit 作为序列号。

图片图片

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分是 1 个 bit:0,这个是无意义的。
  • 第二个部分是 41 个 bit:表示的是时间戳。
  • 第三个部分是 5 个 bit:表示的是机房 ID,10001。
  • 第四个部分是 5 个 bit:表示的是机器 ID,1 1001。
  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 ID 都是正数,所以第一个 bit 统一都是 0。

41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以表示 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

10 bit:记录工作机器 ID。

代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 ID,5 个 bit 代表机器 ID。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

12 bit:这个是用来记录同一个毫秒内产生的不同 ID。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 ID。

简单来说,你的某个服务假设要生成一个全局唯一 ID,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 ID。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 ID = 17,机器 ID = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 ID,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 ID,还有 5 个 bit 设置上机器 ID。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 ID 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 ID 就出来了,类似于:

图片图片

这个算法可以保证,一个机房的一台机器上,在同一毫秒内生成了一个唯一的 ID。可能一个毫秒内会生成多个 ID,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 ID。

SnowFlake 算法的实现代码如下:

public class IdWorker {
 
 //因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
 
 //机器ID  2进制5位  32位减掉1位 31个
 private long workerId;
 //机房ID 2进制5位  32位减掉1位 31个
 private long datacenterId;
 //代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
 private long sequence;
 //设置一个时间初始值    2^41 - 1   差不多可以用69年
 private long twepoch = 1585644268888L;
 //5位的机器id
 private long workerIdBits = 5L;
 //5位的机房id
 private long datacenterIdBits = 5L;
 //每毫秒内产生的id数 2 的 12次方
 private long sequenceBits = 12L;
 // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
 private long maxWorkerId = -1L ^ (-1L << workerIdBits);
 // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
 private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
 private long workerIdShift = sequenceBits;
 private long datacenterIdShift = sequenceBits + workerIdBits;
 private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 private long sequenceMask = -1L ^ (-1L << sequenceBits);
 //记录产生时间毫秒数,判断是否是同1毫秒
 private long lastTimestamp = -1L;
 public long getWorkerId(){
  return workerId;
 }
 public long getDatacenterId() {
  return datacenterId;
 }
 public long getTimestamp() {
  return System.currentTimeMillis();
 }
 
 
 
 public IdWorker(long workerId, long datacenterId, long sequence) {
 
  // 检查机房id和机器id是否超过31 不能小于0
  if (workerId > maxWorkerId || workerId < 0) {
   throw new IllegalArgumentException(
     String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
  }
 
  if (datacenterId > maxDatacenterId || datacenterId < 0) {
 
   throw new IllegalArgumentException(
     String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
  }
  this.workerId = workerId;
  this.datacenterId = datacenterId;
  this.sequence = sequence;
 }
 
 // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
 public synchronized long nextId() {
  // 这儿就是获取当前时间戳,单位是毫秒
  long timestamp = timeGen();
  if (timestamp < lastTimestamp) {
 
   System.err.printf(
     "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
   throw new RuntimeException(
     String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
       lastTimestamp - timestamp));
  }
 
  // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
  // 这个时候就得把seqence序号给递增1,最多就是4096
  if (lastTimestamp == timestamp) {
 
   // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
   //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
   sequence = (sequence + 1) & sequenceMask;
   //当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
   if (sequence == 0) {
    timestamp = tilNextMillis(lastTimestamp);
   }
 
  } else {
   sequence = 0;
  }
  // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
  lastTimestamp = timestamp;
  // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
  // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
  // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
  return ((timestamp - twepoch) << timestampLeftShift) |
    (datacenterId << datacenterIdShift) |
    (workerId << workerIdShift) | sequence;
 }
 
 /**
  * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
  * @param lastTimestamp
  * @return
  */
 private long tilNextMillis(long lastTimestamp) {
 
  long timestamp = timeGen();
 
  while (timestamp <= lastTimestamp) {
   timestamp = timeGen();
  }
  return timestamp;
 }
 //获取当前时间戳
 private long timeGen(){
  return System.currentTimeMillis();
 }
 
 /**
  *  mAIn 测试类
  * @param args
  */
 public static void main(String[] args) {
  System.out.println(1&4596);
  System.out.println(2&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
//  IdWorker worker = new IdWorker(1,1,1);
//  for (int i = 0; i < 22; i++) {
//   System.out.println(worker.nextId());
//  }
 }
}

SnowFlake 算法的优点:

  1. 高性能高可用:生成时不依赖于数据库,完全在内存中生成。
  2. 容量大:每秒钟能生成数百万的自增 ID。
  3. ID 自增:存入数据库中,索引效率高。

SnowFlake 算法的缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成 ID 冲突或者重复。

实际中我们的机房并没有那么多,我们可以改进改算法,将 10bit 的机器 ID 优化,成业务表或者和我们系统相关的业务。



Tags:雪花算法   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
雪花算法详解与Java实现:分布式唯一ID生成原理
SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳...【详细内容】
2024-02-03  Search: 雪花算法  点击:(49)  评论:(0)  加入收藏
聊一聊雪花算法与分布式ID生成
生成全局唯一ID的雪花算法原理雪花算法是一种用于生成全局唯一ID的算法,最初由Twitter开发,用于解决分布式系统中生成ID的问题。其核心思想是将一个64位的长整型ID划分成多个...【详细内容】
2023-12-12  Search: 雪花算法  点击:(130)  评论:(0)  加入收藏
你可能听说过雪花算法
雪花算法介绍雪花算法(Snowflake)是一种分布式唯一ID生成算法,用于生成全局唯一的ID。它的设计目标是在分布式系统中生成ID,保证ID的唯一性、有序性和趋势递增。雪花算法的核心...【详细内容】
2023-11-10  Search: 雪花算法  点击:(202)  评论:(0)  加入收藏
什么是雪花算法?啥原理?附Java实现!
SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳...【详细内容】
2023-03-09  Search: 雪花算法  点击:(148)  评论:(0)  加入收藏
记一次“雪花算法”造成的生产事故的排查记录
本文主要内容如下: 前言最近生产环境遇到一个问题:现象:创建工单、订单等地方,全都创建数据失败。初步排查:报错信息为duplicate key,意思是保存数据的时候,报主键 id 重复,而这些...【详细内容】
2022-11-15  Search: 雪花算法  点击:(197)  评论:(0)  加入收藏
雪花算法
雪花算法SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入...【详细内容】
2022-08-16  Search: 雪花算法  点击:(663)  评论:(0)  加入收藏
面试官:讲讲雪花算法,越详细越好
前面文章在谈论分布式唯一ID生成的时候,有提到雪花算法,这一次,我们详细点讲解,只讲它。SnowFlake算法据国家大气研究中心的查尔斯&middot;奈特称,一般的雪花大约由10^19个水分子...【详细内容】
2021-11-17  Search: 雪花算法  点击:(329)  评论:(0)  加入收藏
聊聊大厂都在用的雪花算法
原文出自:公众号 盼盼编程原文链接: https://mp.weixin.qq.com/s/rz7l1yfZvPtXv74dOYyKEA前言以前用rand和srand生成过伪随机数,伪随机数的序列是固定的,今天学习生成真正的随机...【详细内容】
2021-08-26  Search: 雪花算法  点击:(459)  评论:(0)  加入收藏
JPA自定义ID生成器,雪花算法实现代码分享
本文分享下Spring boot项目下使用JPA操作数据库时关于ID生成器的相关实现代码。在JPA中一个数据表必须要有主键,主键类型一般是推荐使用Long类型,那么在分布式微服务下需要保...【详细内容】
2021-08-17  Search: 雪花算法  点击:(1779)  评论:(0)  加入收藏
分布式ID生成--雪花算法
导读:唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种 依赖数据库,使用如MySQL自增列或Oracle序列等。 UUID随机数 snowflake雪花...【详细内容】
2019-09-05  Search: 雪花算法  点击:(969)  评论:(0)  加入收藏
▌简易百科推荐
小红书、视频号、抖音流量算法解析,干货满满,值得一看!
咱们中国现在可不是一般的牛!网上的网友已经破了十个亿啦!到了这个互联网的新时代,谁有更多的人流量,谁就能赢得更多的掌声哦~抖音、小红书、、视频号,是很多品牌必争的流量洼地...【详细内容】
2024-02-23  二手车小胖说    Tags:流量算法   点击:(12)  评论:(0)  加入收藏
雪花算法详解与Java实现:分布式唯一ID生成原理
SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,且 ID 引入了时间戳...【详细内容】
2024-02-03   一安未来  微信公众号  Tags:雪花算法   点击:(49)  评论:(0)  加入收藏
程序开发中常用的十种算法,你用过几种?
当编写程序时,了解和使用不同的算法对解决问题至关重要。以下是C#中常用的10种算法,每个算法都伴随着示例代码和详细说明。1. 冒泡排序 (Bubble Sort):冒泡排序是一种简单的比...【详细内容】
2024-01-17  架构师老卢  今日头条  Tags:算法   点击:(43)  评论:(0)  加入收藏
百度推荐排序技术的思考与实践
本文将分享百度在推荐排序方面的思考与实践。在整个工业界的推广搜场景上,特征设计通常都是采用离散化的设计,需要保证两方面的效果,一方面是记忆,另一方面是泛化。特征都是通过...【详细内容】
2024-01-09  DataFunTalk  微信公众号  Tags:百度推荐   点击:(73)  评论:(0)  加入收藏
什么是布隆过滤器?如何实现布隆过滤器?
以下我们介绍了什么是布隆过滤器?它的使用场景和执行流程,以及在 Redis 中它的使用,那么问题来了,在日常开发中,也就是在 Java 开发中,我们又将如何操作布隆过滤器呢?布隆过滤器(Blo...【详细内容】
2024-01-05  Java中文社群  微信公众号  Tags:布隆过滤器   点击:(87)  评论:(0)  加入收藏
面向推荐系统的深度强化学习算法研究与应用
随着互联网的快速发展,推荐系统在各个领域中扮演着重要的角色。传统的推荐算法在面对大规模、复杂的数据时存在一定的局限性。为了解决这一问题,深度强化学习算法应运而生。本...【详细内容】
2024-01-04  数码小风向    Tags:算法   点击:(87)  评论:(0)  加入收藏
非负矩阵分解算法:从非负数据中提取主题、特征等信息
非负矩阵分解算法(Non-negativeMatrixFactorization,简称NMF)是一种常用的数据分析和特征提取方法,主要用于从非负数据中提取主题、特征等有意义的信息。本文将介绍非负矩阵分解...【详细内容】
2024-01-02  毛晓峰    Tags:算法   点击:(62)  评论:(0)  加入收藏
再谈前端算法,你这回明白了吗?
楔子 -- 青蛙跳台阶一只青蛙一次可以跳上一级台阶,也可以跳上二级台阶,求该青蛙跳上一个n级的台阶总共需要多少种跳法。分析: 当n=1的时候,①只需要跳一次即可;只有一种跳法,即f(...【详细内容】
2023-12-28  前端爱好者  微信公众号  Tags:前端算法   点击:(107)  评论:(0)  加入收藏
三分钟学习二分查找
二分查找是一种在有序数组中查找元素的算法,通过不断将搜索区域分成两半来实现。你可能在日常生活中已经不知不觉地使用了大脑里的二分查找。最常见的例子是在字典中查找一个...【详细内容】
2023-12-22  小技术君  微信公众号  Tags:二分查找   点击:(78)  评论:(0)  加入收藏
强化学习算法在资源调度与优化中的应用
随着云计算和大数据技术的快速发展,资源调度与优化成为了现代计算系统中的重要问题。传统的资源调度算法往往基于静态规则或启发式方法,无法适应动态变化的环境和复杂的任务需...【详细内容】
2023-12-14  职场小达人欢晓    Tags:算法   点击:(163)  评论:(0)  加入收藏
站内最新
站内热门
站内头条