雪花算法是一种用于生成全局唯一ID的算法,最初由Twitter开发,用于解决分布式系统中生成ID的问题。其核心思想是将一个64位的长整型ID划分成多个部分,每个部分用于表示不同的信息,确保了生成的ID在分布式环境下的唯一性。
package mAIn
import (
"fmt"
"sync"
"time"
)
const (
workerBits = 10
sequenceBits = 12
workerMax = -1 ^ (-1 << workerBits)
sequenceMask = -1 ^ (-1 << sequenceBits)
timeShift = workerBits + sequenceBits
workerShift = sequenceBits
epoch = 1609459200000
)
type Snowflake struct {
mu sync.Mutex
lastTime int64
workerID int64
sequence int64
}
func NewSnowflake(workerID int64) *Snowflake {
if workerID < 0 || workerID > workerMax {
panic(fmt.Sprintf("worker ID must be between 0 and %d", workerMax))
}
return &Snowflake{
lastTime: time.Now().UnixNano() / 1e6,
workerID: workerID,
sequence: 0,
}
}
func (sf *Snowflake) NextID() int64 {
sf.mu.Lock()
defer sf.mu.Unlock()
currentTime := time.Now().UnixNano() / 1e6
if currentTime < sf.lastTime {
panic(fmt.Sprintf("clock moved backwards, refusing to generate ID for %d milliseconds", sf.lastTime-currentTime))
}
if currentTime == sf.lastTime {
sf.sequence = (sf.sequence + 1) & sequenceMask
if sf.sequence == 0 {
for currentTime <= sf.lastTime {
currentTime = time.Now().UnixNano() / 1e6
}
}
} else {
sf.sequence = 0
}
sf.lastTime = currentTime
id := (currentTime-epoch)<<timeShift | (sf.workerID << workerShift) | sf.sequence
return id
}
func main() {
sf := NewSnowflake(1) // 假设工作节点ID为1
for i := 0; i < 10; i++ {
id := sf.NextID()
fmt.Println(id)
time.Sleep(time.Millisecond)
}
}
在高并发场景下,保障雪花算法生成的ID唯一性和递增性的关键在于:
总体来说,雪花算法在高并发下是一个可靠的ID生成方案。它的高性能和低碰撞概率使得它在分布式系统中被广泛应用。