您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

如何用Pytorch实现一个分类器?

时间:2022-10-25 16:27:46  来源:今日头条  作者:传智教育官方账号

学习目标

  • 了解分类器的任务和数据样式
  • 掌握如何用Pytorch实现一个分类器

分类器任务和数据介绍

  • 构造一个将不同图像进行分类的神经网络分类器, 对输入的图片进行判别并完成分类.
  • 本案例采用CIFAR10数据集作为原始图片数据.

CIFAR10数据集介绍: 数据集中每张图片的尺寸是3 * 32 * 32, 代表彩色3通道
CIFAR10数据集总共有10种不同的分类, 分别是"AIrplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck".

CIFAR10数据集的样例如下图所示:

 

训练分类器的步骤

  • 1: 使用torchvision下载CIFAR10数据集
  • 2: 定义卷积神经网络
  • 3: 定义损失函数
  • 4: 在训练集上训练模型
  • 5: 在测试集上测试模型

1: 使用torchvision下载CIFAR10数据集

导入torchvision包来辅助下载数据集

import torch
import torchvision
import torchvision.transforms as transforms

下载数据集并对图片进行调整, 因为torchvision数据集的输出是PILImage格式, 数据域在[0, 1]. 我们将其转换为标准数据域[-1, 1]的张量格式.

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

输出结果:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-Python/ target=_blank class=infotextkey>Python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting ./data/cifar-10-python.tar.gz to ./data
Files already downloaded and verified
  • 注意:
    • 如果你是在windows系统下运行上述代码, 并且出现报错信息 "BrokenPipeError", 可以尝试将torch.utils.data.DataLoader()中的num_workers设置为0.

展示若干训练集的图片

# 导入画图包和numpy
import matplotlib.pyplot as plt
import numpy as np

# 构建展示图片的函数
def imshow(img):
    img = img / 2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# 从数据迭代器中读取一张图片
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 展示图片
imshow(torchvision.utils.make_grid(images))
# 打印标签label
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

输出图片结果:

 

输出标签结果:

bird truck   cat   cat
  • 2: 定义卷积神经网络

仿照2.1节中的类来构造此处的类, 唯一的区别是此处采用3通道3-channel

import torch.nn as nn
import torch.nn.functional as F


class.NET(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()
  • 3: 定义损失函数

采用交叉熵损失函数和随机梯度下降优化器.

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
  • 4: 在训练集上训练模型

采用基于梯度下降的优化算法, 都需要很多个轮次的迭代训练.

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # data中包含输入图像张量inputs, 标签张量labels
        inputs, labels = data

        # 首先将优化器梯度归零
        optimizer.zero_grad()

        # 输入图像张量进网络, 得到输出张量outputs
        outputs = net(inputs)

        # 利用网络的输出outputs和标签labels计算损失值
        loss = criterion(outputs, labels)

        # 反向传播+参数更新, 是标准代码的标准流程
        loss.backward()
        optimizer.step()

        # 打印轮次和损失值
        running_loss += loss.item()
        if (i + 1) % 2000 == 0:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

输出结果:

[1,  2000] loss: 2.227
[1,  4000] loss: 1.884
[1,  6000] loss: 1.672
[1,  8000] loss: 1.582
[1, 10000] loss: 1.526
[1, 12000] loss: 1.474
[2,  2000] loss: 1.407
[2,  4000] loss: 1.384
[2,  6000] loss: 1.362
[2,  8000] loss: 1.341
[2, 10000] loss: 1.331
[2, 12000] loss: 1.291
Finished Training

保存模型:

# 首先设定模型的保存路径
PATH = './cifar_net.pth'
# 保存模型的状态字典
torch.save(net.state_dict(), PATH)
  • 5: 在测试集上测试模型

第一步, 展示测试集中的若干图片

dataiter = iter(testloader)
images, labels = dataiter.next()

# 打印原始图片
imshow(torchvision.utils.make_grid(images))
# 打印真实的标签
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

输出图片结果:

 

输出标签结果:

GroundTruth:    cat  ship  ship plane

第二步, 加载模型并对测试图片进行预测

# 首先实例化模型的类对象
net = Net()
# 加载训练阶段保存好的模型的状态字典
net.load_state_dict(torch.load(PATH))

# 利用模型对图片进行预测
outputs = net(images)

# 共有10个类别, 采用模型计算出的概率最大的作为预测的类别
_, predicted = torch.max(outputs, 1)

# 打印预测标签的结果
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))

输出结果:

Predicted:    cat  ship  ship plane

接下来看一下在全部测试集上的表现

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

输出结果:

Accuracy of the network on the 10000 test images: 53 %

分析结果: 对于拥有10个类别的数据集, 随机猜测的准确率是10%, 模型达到了53%, 说明模型学到了真实的东西.

为了更加细致地看一下模型在哪些类别上表现更好, 在哪些类别上表现更差, 我们分类别的进行准确率计算.

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

输出结果:

Accuracy of plane : 62 %
Accuracy of   car : 62 %
Accuracy of  bird : 45 %
Accuracy of   cat : 36 %
Accuracy of  deer : 52 %
Accuracy of   dog : 25 %
Accuracy of  frog : 69 %
Accuracy of horse : 60 %
Accuracy of  ship : 70 %
Accuracy of truck : 48 %

在GPU上训练模型

  • 为了真正利用Pytorch中Tensor的优秀属性, 加速模型的训练, 我们可以将训练过程转移到GPU上进行.

首先要定义设备, 如果CUDA是可用的则被定义成GPU, 否则被定义成CPU.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(device)

输出结果:

cuda:0

当训练模型的时候, 只需要将模型转移到GPU上, 同时将输入的图片和标签页转移到GPU上即可.

# 将模型转移到GPU上
net.to(device)

# 将输入的图片张量和标签张量转移到GPU上
inputs, labels = data[0].to(device), data[1].to(device)


Tags:Pytorch实   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
如何用Pytorch实现一个分类器?
学习目标 了解分类器的任务和数据样式 掌握如何用Pytorch实现一个分类器分类器任务和数据介绍 构造一个将不同图像进行分类的神经网络分类器, 对输入的图片进行判别并完成分...【详细内容】
2022-10-25  Search: Pytorch实  点击:(326)  评论:(0)  加入收藏
GoogLeNet——CNN经典网络模型详解(pytorch实现)
一、前言论文地址:http://arxiv.org/abs/1602.072612014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共...【详细内容】
2020-08-17  Search: Pytorch实  点击:(300)  评论:(0)  加入收藏
清华开源迁移学习算法库:基于PyTorch实现,支持轻松调用已有算法
机器之心报道编辑:魔王作者:清华大学大数据研究中心近日,清华大学大数据研究中心机器学习研究部开源了一个高效、简洁的迁移学习算法库 Transfer-Learn,并发布了第一个子库&mdas...【详细内容】
2020-08-04  Search: Pytorch实  点击:(443)  评论:(0)  加入收藏
▌简易百科推荐
一篇文章教会你使用Python中三种简单的函数
所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。一、函数简介所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。二、函数定义...【详细内容】
2024-04-11  Go语言进阶学习  微信公众号  Tags:Python   点击:(4)  评论:(0)  加入收藏
一篇文章带你了解Python的分布式进程接口
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。一、前言在Thread和Process中,应当优...【详细内容】
2024-04-11  Go语言进阶学习    Tags:Python   点击:(2)  评论:(0)  加入收藏
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(18)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(34)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(35)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(36)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(89)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  科学随想录  微信公众号  Tags:Graphlib库   点击:(88)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  大雷家吃饭    Tags:Python   点击:(59)  评论:(0)  加入收藏
站内最新
站内热门
站内头条