您当前的位置:首页 > 电脑百科 > 电脑知识

突破计算机性能瓶颈的利器CPU Cache

时间:2023-08-02 12:39:28  来源:微信公众号  作者: 小牛呼噜噜
本文简单介绍了计算机性能瓶颈产生的原因,缓存及其发展历史,最后讲解了缓存弥补CPU和内存性能差异的原理,后面我们会继续更详细深入地介绍Cache的组织结构、缓存一致性,以及如何利用缓存提升我们代码的性能等。
  • 计算机性能的瓶颈
  • 缓存及其发展历史
  • 缓存如何弥补CPU与内存的性能差异?
  • 尾语

大家好,我是呼噜噜,今天我们来介绍计算机的储存器之一,CPU高速缓冲存储器也叫高速缓存,CPU Cache

缓存这个专业术语,在计算机世界中是经常使用到的。它并不是CPU所独有的,比如cdn缓存网站信息,浏览器缓存网页的图像视频等,但本文讲述的是狭义Cache,主要指的是CPU Cache,本文将其简称为"缓存"或者"Cache"

计算机性能的瓶颈

在冯诺依曼架构下,计算机存储器是分层次的,存储器的层次结构如下图所示,是一个金字塔形状的东西。从上到下依次是寄存器、缓存、主存(内存)、硬盘等等

图片图片

离CPU越近的存储器,访问速度越来越快,容量越来越小,每字节的成本也越来越昂贵

比如一个主频为3.0GHZ的CPU,寄存器的速度最快,可以在1个时钟周期内访问,一个时钟周期(CPU中基本时间单位)大约是0.3纳秒,内存访问大约需要120纳秒,固态硬盘访问大约需要50-150微秒,机械硬盘访问大约需要1-10毫秒,最后网络访问最慢,得几十毫秒左右。

这个大家可能对时间不怎么直观,那如果我们把一个时钟周期如果按1秒算的话,那寄存器访问大约是1s,内存访问大约就是6分钟 ,固态硬盘大约是2-6天 ,传统硬盘大约是1-12个月,网络访问就得几年了!我们可以发现CPU的速度和内存等存储器的速度,完全不是一个量级上的。图片

电子计算机刚出来的时候,其实CPU是没有缓存Cache的,那个时候的CPU主频很低,甚至没有内存高,CPU都是直接读写内存的

随着时代的发展,技术的革新,从1980年代开始,差距开始迅速扩大,CPU的速度远远超过内存的速度,在冯诺依曼架构下,CPU访问内存的速度也就成了计算机性能的瓶颈!!!

图片图片

DRAM为内存颗粒,也叫动态随机存取存储器, 图片来源于:How L1 and L2 CPU Caches Work, and Why They're an Essential Part of Modern Chips

为了弥补CPU与内存两者之间的性能差异,也就是要加快CPU访问内存的速度,就引入了缓存CPU Cache,缓存的速度仅次于寄存器,充当了CPU与内存之间的中间角色

缓存及其发展历史

缓存CPU Cache用的是 SRAM(Static Random-Access Memory)的芯片,也叫静态随机存储器。其只要有电,数据就可以保持存在,而一旦断电,数据就会丢失。

CPU Cache 如今通常分为大小不等的3级缓存,分别是 L1 Cache、L2 Cache 和 L3 Cache

图片

我们可以发现越靠近 CPU 核心的缓存,其访问速度越快,其大小越来越小,其制造成本也越昂贵,常见的Cache典型分布图如下:

图片图片

回顾Cache发展历史,我们可以发现Cache其实一开始并不是在CPU的内部,我们这里以Intel系列为例

在80286之前,那个时候是没有缓存Cache的,那个时候的CPU主频很低,甚至没有内存高,CPU都是直接读写内存的

图片图片

 

从80386开始,这个CPU速度和内存速度不匹配问题已经开始展露,并且差距开始迅速扩大,慢速度的内存成为了计算机的瓶颈,无法充分发挥CPU的性能,为解决这个问题,Intel主板支持外部Cache,来配合80386运行

图片图片

 

80486将L1 Cache(大小8KB)放到CPU内部,同时支持外接Cache,即L2 Cache(大小从128KB到256KB),但是不分指令和数据Cache

图片图片

 

虽然L1 Cache大小只有8KB,但其实对那时候CPU来说够用了,我们来看一副缓存命中率与L1、L2大小的关系图:

图片图片

图片来源于:How L1 and L2 CPU Caches Work, and Why They're an Essential Part of Modern Chips

从上图我们可以发现,增大L1 cache对于CPU来说好处不太明显,缓存命中率并没有显著提升,成本还会更昂高,所以性价比不高。

而随着 L2 cache 大小的增加,缓存总命中率会急剧上升,因此容量更大、速度较慢、更便宜的L2成为了更好的选择

 

等到Pentium-1/80586,也就是我们熟悉的奔腾系列,由于Pentium采用了双路执行的超标量结构,有2条并行整数流水线,需要对数据和指令进行双重的访问,为了使得这些访问互不干涉,于是L1 Cache被一分为二,分为指令Cache和数据Cache(大小都是8K),此时的L2 Cache还是在主板上,再后来Intel推出了Pentium Pro/80686,为了进一步提高性能L2 Cache被正式放到CPU内部

图片图片

 

后来CPU多核时代来临,Intel的Pentium D、Pentium EE系列,CPU内部每个核心都有自己的L1、L2 Cache,但他们并不共享,只能依靠总线来传递同步缓存数据。最后Core Duo酷睿系列的出现,L2 Cache变成多核共享模式,采用Intel的“Smart cache”共享缓存技术,到此为止,就确定了现代缓存的基本模式

图片图片

如今CPU Cache 通常分为大小不等的3级缓存,分别是 L1 Cache、L2 Cache 和 L3 Cache,L3 高速缓存为多个 CPU 核心共用的,而L2则被每个核心单独占据,另外现在有的CPU已经有了L4 Cache,未来可能会更多

缓存如何弥补CPU与内存的性能差异?

我们可以思考一个问题:缓存是如何弥补CPU与内存两者之间的性能差异?

缓存主要是利用局部性原理,来提升计算机的整体性能。因为缓存的性能仅次于寄存器,而CPU与内存两者之间的产生的分歧,主要是二者存取速度数量级的差距,那尽可能多地让CPU去存取缓存,同时减少CPU直接访问主存的次数,这样计算机的性能就自然而然地得到巨大的提升

所谓局部性原理,主要分为空间局部性与时间局部性:

  1. 时间局部性:被引用过一次的存储器位置在未来会被多次引用(通常在循环中)。
  2. 空间局部性:如果一个存储器的位置被引用,那么将来他附近的位置也会被引用

缓存这里,会去把CPU最近访问主存(内存)中的指令和数据,临时储存着,因为根据局部性原理,这些指令和数据在较短的时间间隔内很可能会被以后多次使用到,其次是当从主存中取回这些数据时,会同时取回与其位置相邻的主存单元的存放的数据 临时储存到缓存中,因为该指令和数据附近的内存区域,在较短的时间间隔内也可能会被多次访问。

那以后CPU去访问这些指令和数据时,首先去命中L1 Cache,如果命中会直接从对应的缓存中取数据,而不必每次去访问主存,如果没命中,会再去L2 Cache中找,依次类推,如果L3 Cache中不存在,就去内存中找。

尾语

本文简单介绍了计算机性能瓶颈产生的原因,缓存及其发展历史,最后讲解了缓存弥补CPU和内存性能差异的原理,后面我们会继续更详细深入地介绍Cache的组织结构、缓存一致性,以及如何利用缓存提升我们代码的性能等

参考资料:

https://www.extremetech.com/extreme/188776-how-l1-and-l2-cpu-caches-work-and-why-theyre-an-essential-part-of-modern-chips

http://www.cpu-zone.com/80486.htm

本文转载自微信公众号「 小牛呼噜噜」,作者「小牛呼噜噜」,可以通过以下二维码关注。



Tags:CPU Cache   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
CPU Cache是如何映射与寻址的?
CPU Cache的组织结构 Cache与内存地址映射 直接映射 全相联映射 组相联映射 Cache寻址方式 VIVT、VIPT、PIPT(补充) 尾语 往期推荐 哈喽,大家好,我是呼噜噜...【详细内容】
2023-08-29  Search: CPU Cache  点击:(180)  评论:(0)  加入收藏
突破计算机性能瓶颈的利器CPU Cache
本文简单介绍了计算机性能瓶颈产生的原因,缓存及其发展历史,最后讲解了缓存弥补CPU和内存性能差异的原理,后面我们会继续更详细深入地介绍Cache的组织结构、缓存一致性,以及如何...【详细内容】
2023-08-02  Search: CPU Cache  点击:(242)  评论:(0)  加入收藏
▌简易百科推荐
云计算和边缘计算
云计算和边缘计算是两种不同的计算模型,它们各有特点,适用于不同的场景和需求。云计算是一种基于互联网的计算模型,它将计算资源、存储资源和应用服务集中在云端,用户可以通过网...【详细内容】
2024-03-01    简易百科  Tags:云计算   点击:(28)  评论:(0)  加入收藏
云计算与边缘计算:有何不同?
公共云计算平台可以帮助企业充分利用全球服务器来增强其私有数据中心。这使得基础设施能够扩展到任何位置,并有助于计算资源的灵活扩展。混合公共-私有云为企业计算应用程序...【详细内容】
2024-02-28  通信产品推荐官    Tags:云计算   点击:(21)  评论:(0)  加入收藏
量子计算机是什么?跟现在的计算机相比优缺点是什么?
量子计算机是什么?跟现在的计算机相比优缺点是什么? 随着科技的不断发展,计算机技术也取得了巨大的进步。然而,随着摩尔定律的趋近于极限,传统的计算机技术面临着许多挑战。这时...【详细内容】
2024-02-23    简易百科  Tags:量子计算机   点击:(36)  评论:(0)  加入收藏
量子计算机:未来电脑的革命性技术
在科技的广袤天空中,量子计算机如一颗璀璨的新星,以其独特的光芒预示着未来电脑的革命性变革。这项令人瞩目的技术不仅代表着计算机科学的最前沿,更承载着人类对于速度和效率的...【详细内容】
2024-02-23  小浩长得帅    Tags:量子计算机   点击:(40)  评论:(0)  加入收藏
为什么计算机需要十六进制?
今天简单聊聊十六进制。实际上计算机本身是不需要十六进制的,计算机只需要二进制,需要十六进制的是人。每个十六进制中的数字代表4个比特,你可以非常直观的从十六进制中知道对...【详细内容】
2024-02-22  码农的荒岛求生  微信公众号  Tags:计算机   点击:(48)  评论:(0)  加入收藏
多模态RAG应用:跨越文本与图片的智能交互
近年来,多模态RAG(Retrieval-AugmentedGeneration)应用的兴起引发了人们对人工智能技术发展方向的广泛关注。传统的RAG应用主要基于文本的输入和输出,而随着GPT4-V的发布,多模态R...【详细内容】
2024-01-29  况成放    Tags:多模态RAG   点击:(66)  评论:(0)  加入收藏
量子计算机真相揭秘,一篇文章颠覆你的认知
你看过《三体》吗?在刘慈欣笔下,三体人用一种叫“智子”的黑科技干扰了人类的实验,从而锁死了人类的技术。而在现实世界,一把无形的“锁”其实也悄然逼近了我们,它就是芯片。随着...【详细内容】
2024-01-23  天才简史  今日头条  Tags:量子计算机   点击:(25)  评论:(0)  加入收藏
生成对抗网络(GAN)在计算机视觉领域中的应用
生成对抗网络(GAN)是一种在计算机视觉领域中广泛应用的深度学习模型。它由一个生成器网络和一个判别器网络组成,通过对抗训练的方式实现图像的生成和判别。GAN在计算机视觉中的...【详细内容】
2024-01-15  数码小风向    Tags:生成对抗网络   点击:(72)  评论:(0)  加入收藏
如何免费生成logo?
Logo设计对于一个品牌来说非常重要,它是品牌的身份标识,可以帮助人们迅速识别和记住一个品牌。同时还可以帮助建立品牌认知度,传达出品牌的专业形象。无论是大公司还是刚起步的...【详细内容】
2024-01-05  阳仔问文    Tags:logo   点击:(87)  评论:(0)  加入收藏
自然语言处理中的句法分析方法研究与实现
自然语言处理(NLP)中的句法分析方法是NLP领域的重要研究内容之一,它旨在通过对句子结构的分析和理解,揭示句子中单词之间的语法关系,为后续的语义理解和信息提取提供基础支撑。本...【详细内容】
2024-01-04  毛晓峰    Tags:自然语言处理   点击:(55)  评论:(0)  加入收藏
相关文章
    无相关信息
站内最新
站内热门
站内头条