Multi-Version Concurrency Control 多版本并发控制,MVCC 是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问;在编程语言中实现事务内存。
如何控制并发是数据库领域中非常重要的问题之一,不过到今天为止事务并发的控制已经有了很多成熟的解决方案,而这些方案的原理就是这篇文章想要介绍的内容,文章中会介绍最为常见的三种并发控制机制:
分别是悲观并发控制、乐观并发控制和多版本并发控制,其中悲观并发控制其实是最常见的并发控制机制,也就是锁;而乐观并发控制其实也有另一个名字:乐观锁,乐观锁其实并不是一种真实存在的锁,我们会在文章后面的部分中具体介绍;最后就是多版本并发控制(MVCC)了,与前两者对立的命名不同,MVCC 可以与前两者中的任意一种机制结合使用,以提高数据库的读性能。
控制不同的事务对同一份数据的获取是保证数据库的一致性的最根本方法,如果我们能够让事务在同一时间对同一资源有着独占的能力,那么就可以保证操作同一资源的不同事务不会相互影响。
最简单的、应用最广的方法就是使用锁来解决,当事务需要对资源进行操作时需要先获得资源对应的锁,保证其他事务不会访问该资源后,在对资源进行各种操作;在悲观并发控制中,数据库程序对于数据被修改持悲观的态度,在数据处理的过程中都会被锁定,以此来解决竞争的问题。
为了最大化数据库事务的并发能力,数据库中的锁被设计为两种模式,分别是共享锁和互斥锁。当一个事务获得共享锁之后,它只可以进行读操作,所以共享锁也叫读锁;而当一个事务获得一行数据的互斥锁时,就可以对该行数据进行读和写操作,所以互斥锁也叫写锁。
共享锁和互斥锁除了限制事务能够执行的读写操作之外,它们之间还有『共享』和『互斥』的关系,也就是多个事务可以同时获得某一行数据的共享锁,但是互斥锁与共享锁和其他的互斥锁并不兼容,我们可以很自然地理解这么设计的原因:多个事务同时写入同一数据难免会发生各种诡异的问题。
如果当前事务没有办法获取该行数据对应的锁时就会陷入等待的状态,直到其他事务将当前数据对应的锁释放才可以获得锁并执行相应的操作。
除了悲观并发控制机制 - 锁之外,我们其实还有其他的并发控制机制,乐观并发控制(Optimistic Concurrency Control)。乐观并发控制也叫乐观锁,但是它并不是真正的锁,很多人都会误以为乐观锁是一种真正的锁,然而它只是一种并发控制的思想。
在这一节中,我们将会先介绍基于时间戳的并发控制机制,然后在这个协议的基础上进行扩展,实现乐观的并发控制机制。
基于时间戳的协议
锁协议按照不同事务对同一数据项请求的时间依次执行,因为后面执行的事务想要获取的数据已将被前面的事务加锁,只能等待锁的释放,所以基于锁的协议执行事务的顺序与获得锁的顺序有关。在这里想要介绍的基于时间戳的协议能够在事务执行之前先决定事务的执行顺序。
每一个事务都会具有一个全局唯一的时间戳,它即可以使用系统的时钟时间,也可以使用计数器,只要能够保证所有的时间戳都是唯一并且是随时间递增的就可以。
基于时间戳的协议能够保证事务并行执行的顺序与事务按照时间戳串行执行的效果完全相同;每一个数据项都有两个时间戳,读时间戳和写时间戳,分别代表了当前成功执行对应操作的事务的时间戳。
该协议能够保证所有冲突的读写操作都能按照时间戳的大小串行执行,在执行对应的操作时不需要关注其他的事务只需要关心数据项对应时间戳的值就可以了:
无论是读操作还是写操作都会从左到右依次比较读写时间戳的值,如果小于当前值就会直接被拒绝然后回滚,数据库系统会给回滚的事务添加一个新的时间戳并重新执行这个事务。
基于验证的协议
乐观并发控制其实本质上就是基于验证的协议,因为在多数的应用中只读的事务占了绝大多数,事务之间因为写操作造成冲突的可能非常小,也就是说大多数的事务在不需要并发控制机制也能运行的非常好,也可以保证数据库的一致性;而并发控制机制其实向整个数据库系统添加了很多的开销,我们其实可以通过别的策略降低这部分开销。
而验证协议就是我们找到的解决办法,它根据事务的只读或者更新将所有事务的执行分为两到三个阶段:
在读阶段,数据库会执行事务中的全部读操作和写操作,并将所有写后的值存入临时变量中,并不会真正更新数据库中的内容;在这时候会进入下一个阶段,数据库程序会检查当前的改动是否合法,也就是是否有其他事务在 RAED PHASE 期间更新了数据,如果通过测试那么直接就进入 WRITE PHASE 将所有存在临时变量中的改动全部写入数据库,没有通过测试的事务会直接被终止。
为了保证乐观并发控制能够正常运行,我们需要知道一个事务不同阶段的发生时间,包括事务开始时间、验证阶段的开始时间以及写阶段的结束时间;通过这三个时间戳,我们可以保证任意冲突的事务不会同时写入数据库,一旦由一个事务完成了验证阶段就会立即写入,其他读取了相同数据的事务就会回滚重新执行。
作为乐观的并发控制机制,它会假定所有的事务在最终都会通过验证阶段并且执行成功,而锁机制和基于时间戳排序的协议是悲观的,因为它们会在发生冲突时强制事务进行等待或者回滚,哪怕有不需要锁也能够保证事务之间不会冲突的可能。
多版本并发控制
到目前为止我们介绍的并发控制机制其实都是通过延迟或者终止相应的事务来解决事务之间的竞争条件(Race condition)来保证事务的可串行化;虽然前面的两种并发控制机制确实能够从根本上解决并发事务的可串行化的问题,但是在实际环境中数据库的事务大都是只读的,读请求是写请求的很多倍,如果写请求和读请求之前没有并发控制机制,那么最坏的情况也是读请求读到了已经写入的数据,这对很多应用完全是可以接受的。
在这种大前提下,数据库系统引入了另一种并发控制机制 - 多版本并发控制(Multiversion Concurrency Control),每一个写操作都会创建一个新版本的数据,读操作会从有限多个版本的数据中挑选一个最合适的结果直接返回;在这时,读写操作之间的冲突就不再需要被关注,而管理和快速挑选数据的版本就成了 MVCC 需要解决的主要问题。
MVCC 并不是一个与乐观和悲观并发控制对立的东西,它能够与两者很好的结合以增加事务的并发量,在目前最流行的 SQL 数据库 MySQL 和 PostgreSQL 中都对 MVCC 进行了实现;但是由于它们分别实现了悲观锁和乐观锁,所以 MVCC 实现的方式也不同。
MySQL 与 MVCC
MySQL 中实现的多版本两阶段锁协议(Multiversion 2PL)将 MVCC 和 2PL 的优点结合了起来,每一个版本的数据行都具有一个唯一的时间戳,当有读事务请求时,数据库程序会直接从多个版本的数据项中具有最大时间戳的返回。
更新操作就稍微有些复杂了,事务会先读取最新版本的数据计算出数据更新后的结果,然后创建一个新版本的数据,新数据的时间戳是目前数据行的最大版本 +1:
数据版本的删除也是根据时间戳来选择的,MySQL 会将版本最低的数据定时从数据库中清除以保证不会出现大量的遗留内容。
PostgreSQL 与 MVCC
与 MySQL 中使用悲观并发控制不同,PostgreSQL 中都是使用乐观并发控制的,这也就导致了 MVCC 在于乐观锁结合时的实现上有一些不同,最终实现的叫做多版本时间戳排序协议(Multiversion Timestamp Ordering),在这个协议中,所有的的事务在执行之前都会被分配一个唯一的时间戳,每一个数据项都有读写两个时间戳:
当 PostgreSQL 的事务发出了一个读请求,数据库直接将最新版本的数据返回,不会被任何操作阻塞,而写操作在执行时,事务的时间戳一定要大或者等于数据行的读时间戳,否则就会被回滚。
这种 MVCC 的实现保证了读事务永远都不会失败并且不需要等待锁的释放,对于读请求远远多于写请求的应用程序,乐观锁加 MVCC 对数据库的性能有着非常大的提升;虽然这种协议能够针对一些实际情况做出一些明显的性能提升,但是也会导致两个问题,一个是每一次读操作都会更新读时间戳造成两次的磁盘写入,第二是事务之间的冲突是通过回滚解决的,所以如果冲突的可能性非常高或者回滚代价巨大,数据库的读写性能还不如使用传统的锁等待方式。
MVCC是通过在每行记录后面保存两个隐藏的列来实现的。这两个列,一个保存了行的创建时间,一个保存行的过期时间(或删除时间)。当然存储的并不是实际的时间值,而是系统版本号(system version number)。每开始一个新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务的版本号,用来和查询到的每行记录的版本号进行比较。
下面看一下在REPEATABLE READ隔离级别下,MVCC具体是如何操作的。
举例说明
create table mvcctest(
id int primary key auto_increment,
name varchar(20));
transaction 1:
start transaction; insert into mvcctest values(NULL,'mi'); insert into mvcctest values(NULL,'kong'); commit;
假设系统初始事务ID为1;
IDNAME创建时间过期时间1mi1undefined2kong1undefined
transaction 2:
start transaction; select * from mvcctest; //(1) select * from mvcctest; //(2) commit
SELECT
假设当执行事务2的过程中,准备执行语句(2)时,开始执行事务3:
transaction 3:
start transaction;
insert into mvcctest values(NULL,'qu');
commit;
IDNAME创建时间过期时间1mi1undefined2kong1undefined3qu3undefined
事务3执行完毕,开始执行事务2 语句2,由于事务2只能查询创建时间小于等于2的,所以事务3新增的记录在事务2中是查不出来的,这就通过乐观锁的方式避免了幻读的产生
UPDATE
假设当执行事务2的过程中,准备执行语句(2)时,开始执行事务4:
transaction session 4:
start transaction; update mvcctest set name = 'fan' where id = 2; commit;
InnoDB执行UPDATE,实际上是新插入了一行记录,并保存其创建时间为当前事务的ID,同时保存当前事务ID到要UPDATE的行的删除时间
IDNAME创建时间过期时间1mi1undefined2kong142fan4undefined
事务4执行完毕,开始执行事务2 语句2,由于事务2只能查询创建时间小于等于2的,所以事务修改的记录在事务2中是查不出来的,这样就保证了事务在两次读取时读取到的数据的状态是一致的
DELETE
假设当执行事务2的过程中,准备执行语句(2)时,开始执行事务5:
transaction session 5:
start transaction; delete from mvcctest where id = 2; commit;
IDNAME创建时间过期时间1mi1undefined2kong15
事务5执行完毕,开始执行事务2 语句2,由于事务2只能查询创建时间小于等于2、并且过期时间大于等于2,所以id=2的记录在事务2 语句2中,也是可以查出来的,这样就保证了事务在两次读取时读取到的数据的状态是一致的