您当前的位置:首页 > 电脑百科 > 数据库 > 百科

数据可视化必须注意的30个小技巧总结

时间:2022-12-03 16:40:10  来源:DataHunter  作者:

来源丨DataHunter

编辑丨极市平台

优秀的数据可视化图表只是罗列、总结数据吗?当然不是!数据可视化其真正的价值是设计出可以被读者轻松理解的数据展示,因此在设计过程中,每一个选择,最终都应落脚于读者的体验,而非图表制作者个人。

这里给大家总结了数据可视化的制作的30个小技巧,通过列举一些容易被忽略的常见错误,最终能够快速提升和巩固你的可视化制作水平。

一、你不得不注意的图表制作小技巧1.条形图的基线必须从零开始

条形图的原理就是通过比较条块的长度来比较值的大小。当基线被改变了,视觉效果也就扭曲了。


 

2.使用简单易读的字体

有些时候,排版可以提升视觉效果,增加额外的情感和洞察力。但数据可视化不包括在内。坚持使用简单的无衬线字体(通常是Excel等程序中的默认字体)。无衬线字体即是那些文字边缘没有小脚的字体。


 

3.条状图宽度适度

条形图之间的间隔应该是1/2栏宽度。


 

4.使用2D图形

虽然他们看起来很酷,但是3d形状可以扭曲感知,因此扭曲数据。坚持2次元,确保数据准确。


 

5.使用表格数字字体

表格间距赋予所有的数字相同的宽度,使它们排列时能彼此对齐,使比较更容易。大多数流行字体都内置了表格。不确定字体是否正确?就看小数点(或任何数字)是否对齐就行。


 

6.统一感

统一感使我们更容易接收信息:颜色,图像,风格,来源……


 

7.不要过分热衷于饼图

展示多个区块比例大小,所有区块(圆弧)的加和等于 100%。但最好避免使用这个图表,因为肉眼对面积大小不敏感。


 

8.折线图中使用连贯的线条

虚线,虚线容易分散注意力。相反,使用实线和颜色,反而容易区分彼此的区别。


 

9.尊重部分所占整体的比例

在人们多选的问题上就会出现比例的重叠,不同选项的百分比之和大于一。为了避免这种情况,不能直接把比例做成统计图。相较于呈现数值,有些图更着重于表现部分与整体的关系。


 

10.面积、尺寸可视化

对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。


 

11.使用大小来可视化值

大小可以帮助强调重要信息并添加上下文提示,使用大小来表示值配合地图使用的效果也非常好。如果您的可视化中有多个大小相同的数据点,它们会混在一起,很难区分值。


 

12.使用相同细节

添加的细节(和数字)越多,大脑处理的时间就越长。想想你想要用你的数据传达什么,以及最有效的方式是什么。

13.使用基础图形

一个很好的经验法则是,如果你不能高效理解,你的读者或听众可能也难理解。因此,坚持使用基础图形:直方图、条形图、维恩图、散点图和线形图。


 

14.视图数量

将您的可视化中的视图数量限制为三到四个。如果您添加太多视图,大局会被详细信息所淹没。

二、关于图表配色,你可以参考的5条准则1.颜色深浅

通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。


 

2.使用同一色系

颜色用得太花,会给数据增加不可承受之重,相反,设计师应该采用同一色系,或者类比色。


 

3.避免使用鲜艳的颜色

明亮鲜艳的颜色就像是把所有的字母都大写想要强调一样,你的听众感觉你在对他们大声推销。单调的颜色,反而能很好地用于数据可视化,因为它们可以让你的读者理解你的数据,而不至于被数据淹没。


 

4.标签使用不同颜色区分

在某些情况下,在一段时间或一系列的值中,我们可能测量了不同种类的物体。例如,假设我们测量 6 个月以来狗和猫的体重。在实验结束时,我们想画出每只动物的体重,分别用蓝色和红色区分猫和狗。


 

5.颜色数量

不要在一张图上使用6种以上的颜色。


 

三、标准的可视化图表一定有注释1.解释编码

通过一定的形状、颜色和几何图形的结合,将数据呈现出来。为了让读者能读清楚,图表设计者就要把这些图形解码回数据值。

2.轴标签

这可能看起来没有必要,或者不是很有帮助,但是你无法想象,如果你的图表有点混乱,或者看到数据的人对此不是很熟悉,你会被问多少次 x/y 轴代表的是什么。按照前面的两个绘图示例,如果要为轴设置特定名称。

3.标题

如果我们要将数据呈现给第三方,另一个基本但关键的要点是使用标题,它和之前的轴标记非常相似。


 

4.重点元素做注释

通常情况下,仅仅在图表的左右两侧使用刻度本身并不是很清楚。在图上标注值对于解释图表非常有用。


 

5.重要视图位置

将最重要的视图放置在顶部或左上角。眼睛通常会首先注意到该区域。


 

四、优秀的可视化图表,遵守的6条原则1.数据排序有序

数据类别按字母顺序,大小顺序,或价值进行排序,以一种合乎逻辑的和直观的方式来引导读者了解数据。


 

2.比较数据

比较是展示数据差异的好法子,但是如果你的读者不容易看出差别的话,那么你的比较就毫无意义。确保所有的数据都是呈现在读者面前,选择最合适的比较方法。


 

3.不可扭曲数据

确保所有可视化方式是准确的。例如,气泡图大小应该根据区域扩展,而不是直径。


 

4.展示数据

让读者看到数据,这是可视化的重点。确保没有数据丢失或被设计。例如,使用标准的面积图时,可以添加透明度,确保读者可以看到所有数据。

5.删除变量

很多时候,太多的信息会影响读者的注意,从可视化中删除隐含信息是一个好主意,在这种情况下,我认为我们不需要在轴中包含变量的名称。

6.避免数据噪音

把不重要的东西减到最少或者去掉。这包括减弱或移除图形线,改变轴线、图形线的颜色,以及用浅灰色描绘电子表格行。使得“数据比率”可以达到一个很高的水平,听众会更容易明白其中的数据情况。


 

以上的小细节你都记住了嘛?俗话说熟能生巧,在每次数据可视化的制作过程中多思考一下,有哪些细节需要注意?这些细节的处理是否合理,数据可视化大神指日可待。



Tags:数据可视化   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
数据可视化在网络安全中的关键作用
在当今数字化时代,网络安全已成为各大企业乃至国家安全的重要组成部分。随着网络攻击的日益复杂和隐蔽,传统的网络安全防护措施已难以满足需求,急需新型的解决方案以增强网络防...【详细内容】
2024-03-29  Search: 数据可视化  点击:(19)  评论:(0)  加入收藏
八个常见的数据可视化错误以及如何避免它们
在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可...【详细内容】
2024-03-26  Search: 数据可视化  点击:(7)  评论:(0)  加入收藏
Rust中的数据可视化指南
可视化是数据分析和解释的一个关键方面。虽然Rust主要以其性能和安全特性而闻名,但它也为数据可视化提供了强大的工具。在这个全面的指南中,我们将深入研究Rust中的数据可视化...【详细内容】
2024-03-07  Search: 数据可视化  点击:(31)  评论:(0)  加入收藏
构建Flask 数据可视化大屏
引言数据可视化是现代应用开发中不可或缺的一环,而使用 Flask 构建数据可视化大屏是一个既有趣又具有挑战性的项目。在这篇文章中,我们将深入介绍如何借助 Flask 后端和纯 HTM...【详细内容】
2023-12-27  Search: 数据可视化  点击:(80)  评论:(0)  加入收藏
基于Python实现大规模光栅人口数据可视化
译者 | 朱先忠审校 | 重楼我经常看到网上流传着美丽的人口地图;然而,我也常常会遇到一些技术问题,比如可视化本文中显示的其他的地图片段,或者将大规模光栅数据转换为更便于计算...【详细内容】
2023-12-14  Search: 数据可视化  点击:(262)  评论:(0)  加入收藏
埋点数据可视化的探索与实践
如何进行埋点数据的分析?埋点是数据采集的专用术语,在数据驱动型业务中,如营销策略、产品迭代、业务分析、用户画像等,都依赖于数据提供决策支持,希望通过数据来捕捉特定的用户行...【详细内容】
2023-11-30  Search: 数据可视化  点击:(61)  评论:(0)  加入收藏
Python数据可视化:使用pyecharts创建交互式图表
数据可视化是数据分析和呈现的重要组成部分。通过可视化,数据可以更容易地被理解和解释。Python中有许多强大的数据可视化工具,其中之一是pyecharts,它是一个基于Echarts库的Py...【详细内容】
2023-10-28  Search: 数据可视化  点击:(141)  评论:(0)  加入收藏
Python数据可视化与图表绘制:让数据一目了然
Python 提供了多种数据可视化库,使得数据的可视化和图表绘制变得非常简单和灵活。下面将介绍一些常用的 Python 数据可视化库,并分享如何使用它们来创建各种类型的图表。一、M...【详细内容】
2023-10-07  Search: 数据可视化  点击:(338)  评论:(0)  加入收藏
你是否知道如何使用Python Matplotlib创建令人惊叹的数据可视化?
Python Matplotlib 的使用Python Matplotlib 是一个基于 Python 的 2D 绘图库,能够生成各种静态、动态、交互式的图表,支持多种输出格式,包括图片、PDF、SVG 等。Matplotlib 提...【详细内容】
2023-08-31  Search: 数据可视化  点击:(238)  评论:(0)  加入收藏
Tableau Desktop 2021数据可视化工具
软件特点一、快速获得可行的见解将图表构建者抛在后面。实时视觉分析推动了无限的数据探索。交互式仪表板可帮助您即时发现隐藏的见解。Tableau利用人们的自然能力快速发现...【详细内容】
2023-08-31  Search: 数据可视化  点击:(255)  评论:(0)  加入收藏
▌简易百科推荐
向量数据库落地实践
本文基于京东内部向量数据库vearch进行实践。Vearch 是对大规模深度学习向量进行高性能相似搜索的弹性分布式系统。详见: https://github.com/vearch/zh_docs/blob/v3.3.X/do...【详细内容】
2024-04-03  京东云开发者    Tags:向量数据库   点击:(5)  评论:(0)  加入收藏
原来 SQL 函数是可以内联的!
介绍在某些情况下,SQL 函数(即指定LANGUAGE SQL)会将其函数体内联到调用它的查询中,而不是直接调用。这可以带来显著的性能提升,因为函数体可以暴露给调用查询的规划器,从而规划器...【详细内容】
2024-04-03  红石PG  微信公众号  Tags:SQL 函数   点击:(5)  评论:(0)  加入收藏
如何正确选择NoSQL数据库
译者 | 陈峻审校 | 重楼Allied Market Research最近发布的一份报告指出,业界对于NoSQL数据库的需求正在持续上升。2022年,全球NoSQL市场的销售额已达73亿美元,预计到2032年将达...【详细内容】
2024-03-28    51CTO  Tags:NoSQL   点击:(14)  评论:(0)  加入收藏
为什么数据库连接池不采用 IO 多路复用?
这是一个非常好的问题。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcat connection pool等技术来与DB连接,哪怕整个程序已经变成以...【详细内容】
2024-03-27  dbaplus社群    Tags:数据库连接池   点击:(14)  评论:(0)  加入收藏
八个常见的数据可视化错误以及如何避免它们
在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可...【详细内容】
2024-03-26  DeepHub IMBA  微信公众号  Tags:数据可视化   点击:(7)  评论:(0)  加入收藏
到底有没有必要分库分表,如何考量的
关于是否需要进行分库分表,可以根据以下考量因素来决定: 数据量和负载:如果数据量巨大且负载压力较大,单一库单一表可能无法满足性能需求,考虑分库分表。 数据增长:预估数据增长...【详细内容】
2024-03-20  码上遇见你  微信公众号  Tags:分库分表   点击:(16)  评论:(0)  加入收藏
在 SQL 中写了 in 和 not in,技术总监说要炒了我……
WHY?IN 和 NOT IN 是比较常用的关键字,为什么要尽量避免呢?1、效率低项目中遇到这么个情况:t1表 和 t2表 都是150w条数据,600M的样子,都不算大。但是这样一句查询 ↓select *...【详细内容】
2024-03-18  dbaplus社群    Tags:SQL   点击:(6)  评论:(0)  加入收藏
应对慢SQL的致胜法宝:7大实例剖析+优化原则
大促备战,最大的隐患项之一就是慢SQL,对于服务平稳运行带来的破坏性最大,也是日常工作中经常带来整个应用抖动的最大隐患,在日常开发中如何避免出现慢SQL,出现了慢SQL应该按照什...【详细内容】
2024-03-14  京东云开发者    Tags:慢SQL   点击:(5)  评论:(0)  加入收藏
过去一年,我看到了数据库领域的十大发展趋势
作者 | 朱洁策划 | 李冬梅过去一年,行业信心跌至冰点2022 年中,红衫的一篇《适应与忍耐》的报告,对公司经营提出了预警,让各个公司保持现金流,重整团队,想办法增加盈利。这篇报告...【详细内容】
2024-03-12    InfoQ  Tags:数据库   点击:(32)  评论:(0)  加入收藏
SQL优化的七个方法,你会哪个?
一、插入数据优化 普通插入:在平时我们执行insert语句的时候,可能都是一条一条数据插入进去的,就像下面这样。INSERT INTO `department` VALUES(1, '研发部(RD)', &#39...【详细内容】
2024-03-07  程序员恰恰  微信公众号  Tags:SQL优化   点击:(20)  评论:(0)  加入收藏
站内最新
站内热门
站内头条