数据库CDC是指数据库的变更数据捕获(Change Data Capture),它是一种用于捕获数据库中增量更新、插入和删除操作的技术。它通过监视数据库日志或其他方式来识别变更,然后将这些变更转换成易于消费的格式,并传输到消息队列、数据仓库或其他存储设备中。数据库CDC是一种非常有用的技术,它能够提供实时性、可靠性、灵活性、高效性和易用性等优势,为企业提供了更好的数据管理和应用价值。接下来就分享几个CDC相关的开源项目。
Canal是阿里巴巴开源的一个MySQL数据库增量数据订阅和消费组件,能够将数据库中的增量数据变化捕获并传递给下游的消费方。它的主要原理是通过监视MySQL数据库的binlog日志文件,解析其中的更新、插入、删除操作,并将这些操作转换为可供程序直接使用的数据格式。
Canal的运用场景包括:
Canal的工作原理如下:
canal 1.1.1版本之后, 默认支持将canal server接收到的binlog数据直接投递到MQ,canal 1.1.4版本,迎来最重要的WebUI能力,引入canal-admin工程,支持面向WebUI的canal动态管理能力,支持配置、任务、日志等在线白屏运维能力.
代码地址:https://Github.com/alibaba/canal.git
Maxwell是Zillow Group开源的一个MySQL数据库增量数据订阅和消费组件,能够将MySQL数据库中的增量数据变化捕获并传递给下游的消费方。与Canal类似,Maxwell的主要原理也是通过监视MySQL数据库的binlog日志文件,解析其中的更新、插入、删除操作,并将这些操作转换为可供程序直接使用的数据格式。
Maxwell的运用场景包括:
Maxwell的工作原理如下:
Maxwell是一个非常实用的MySQL增量数据订阅和消费组件,能够实现数据同步、数据分发、实时计算和数据备份和恢复等功能。与Canal相比,Maxwell的特点是性能更高,支持更多的数据类型和配置方式,同时还提供了更加友好和灵活的API和命令行工具。
代码地址:https://github.com/zendesk/maxwell.git
Debezium是一个由Red Hat开源的、分布式的CDC工具,能够从多种数据库中捕获数据变更事件,并将其转换为可消费的消息格式。Debezium支持的数据库包括MySQL、PostgreSQL、Oracle、SQL Server等多种数据库。
Debezium的运用场景包括:
Debezium的工作原理如下:
Debezium是一个功能强大的CDC工具,能够实现数据同步、数据集成、实时计算和数据备份和恢复等功能。与Canal和Maxwell相比,Debezium的特点是支持多种数据库和多种消息队列,并且提供了更加灵活、可定制的API和配置方式。
代码地址:https://github.com/debezium/debezium.git
Databus是LinkedIn开源的一个数据总线工具,能够从多种数据源中捕获增量数据,并将其发送到多种存储设备中。Databus支持的数据源包括MySQL、Oracle、Kafka等多种数据源。
Databus的运用场景包括:
Databus的工作原理如下:
Databus是一个非常实用的数据总线工具,能够实现数据同步、数据集成、实时计算和数据备份和恢复等功能。与其他CDC工具相比,Databus的特点是支持多种数据源和消息队列,并且提供了更加灵活、可定制的API和配置方式。同时,Databus还具有很高的可靠性和扩展性,适合处理高并发和大规模的数据变更事件。
代码地址:https://github.com/linkedin/databus.git
Flink CDC是Apache Flink社区开发的一个CDC工具,能够从多种数据源中捕获增量数据,并将其转换为DataStream流处理引擎能够处理的数据格式。Flink CDC支持的数据源包括MySQL、PostgreSQL、Oracle等多种数据库。
Flink CDC的运用场景包括:
Flink CDC的工作原理如下:
Flink CDC是一个非常强大的CDC工具,能够实现数据同步、实时计算和数据备份等功能。与其他CDC工具相比,Flink CDC的特点是支持非常广泛的数据源和流处理引擎,同时还提供了更加灵活、可定制的API和配置方式。
代码地址:https://github.com/ververica/flink-cdc-connectors.git
除了以上这些CDC项目外,Pulsar也提供有CDC插件,Pulsar IO CDC是一个Apache Pulsar的插件,用于实时捕获数据库的变更,并将其转化为消息的形式发送到Pulsar集群中。
基于日志的CDC相对来说更加全面、可靠、实时、无业务侵入性,但实现起来比较困难,而基于查询的CDC则更加灵活、易用,但延迟高,有可能会影响到业务,还可能会存在遗漏数据的情况。因此,在选择 CDC 技术时需要根据具体场景和需求来进行选择。