Apache Doris 是一个基于 MPP 架构的高性能、实时的分析型数据库,以极速易用的特点被人们所熟知,仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以支持高并发的点查询场景,也能支持高吞吐的复杂分析场景。基于此,Apache Doris 能够较好的满足报表分析、即席查询、统一数仓构建、数据湖联邦查询加速等使用场景,用户可以在此之上构建用户行为分析、AB 实验平台、日志检索分析、用户画像分析、订单分析等应用。
Apache Doris 最早是诞生于百度广告报表业务的 Palo 项目,2017 年正式对外开源,2018 年 7 月由百度捐赠给 Apache 基金会进行孵化,之后在 Apache 导师的指导下由孵化器项目管理委员会成员进行孵化和运营。目前 Apache Doris 社区已经聚集了来自不同行业近百家企业的 300 余位贡献者,并且每月活跃贡献者人数也接近 100 位。 2022 年 6 月,Apache Doris 成功从 Apache 孵化器毕业,正式成为 Apache 顶级项目(Top-Level Project,TLP)
Apache Doris 如今在中国乃至全球范围内都拥有着广泛的用户群体,截止目前, Apache Doris 已经在全球超过 500 家企业的生产环境中得到应用,在中国市值或估值排行前 50 的互联网公司中,有超过 80% 长期使用 Apache Doris,包括百度、美团、小米、京东、字节跳动、腾讯、网易、快手、微博、贝壳等。同时在一些传统行业如金融、能源、制造、电信等领域也有着丰富的应用。
使用场景
如下图所示,数据源经过各种数据集成和加工处理后,通常会入库到实时数仓 Doris 和离线湖仓(Hive, Iceberg, Hudi 中),Apache Doris 被广泛应用在以下场景中。
Doris整体架构如下图所示,Doris 架构非常简单,只有两类进程
这两类进程都是可以横向扩展的,单集群可以支持到数百台机器,数十 PB 的存储容量。并且这两类进程通过一致性协议来保证服务的高可用和数据的高可靠。这种高度集成的架构设计极大的降低了一款分布式系统的运维成本。
在使用接口方面,Doris 采用 MySQL 协议,高度兼容 MySQL 语法,支持标准 SQL,用户可以通过各类客户端工具来访问 Doris,并支持与 BI 工具的无缝对接。
在存储引擎方面,Doris 采用列式存储,按列进行数据的编码压缩和读取,能够实现极高的压缩比,同时减少大量非相关数据的扫描,从而更加有效利用 IO 和 CPU 资源。
Doris 也支持比较丰富的索引结构,来减少数据的扫描:
在存储模型方面,Doris 支持多种存储模型,针对不同的场景做了针对性的优化:
Doris 也支持强一致的物化视图,物化视图的更新和选择都在系统内自动进行,不需要用户手动选择,从而大幅减少了物化视图维护的代价。
在查询引擎方面,Doris 采用 MPP 的模型,节点间和节点内都并行执行,也支持多个大表的分布式 Shuffle Join,从而能够更好应对复杂查询。
Doris 查询引擎是向量化的查询引擎,所有的内存结构能够按照列式布局,能够达到大幅减少虚函数调用、提升 Cache 命中率,高效利用 SIMD 指令的效果。在宽表聚合场景下性能是非向量化引擎的 5-10 倍。
Doris 采用了 Adaptive Query Execution 技术, 可以根据 Runtime Statistics 来动态调整执行计划,比如通过 Runtime Filter 技术能够在运行时生成生成 Filter 推到 Probe 侧,并且能够将 Filter 自动穿透到 Probe 侧最底层的 Scan 节点,从而大幅减少 Probe 的数据量,加速 Join 性能。Doris 的 Runtime Filter 支持 In/Min/Max/Bloom Filter。
在优化器方面 Doris 使用 CBO 和 RBO 结合的优化策略,RBO 支持常量折叠、子查询改写、谓词下推等,CBO 支持 Join Reorder。目前 CBO 还在持续优化中,主要集中在更加精准的统计信息收集和推导,更加精准的代价模型预估等方面。