您当前的位置:首页 > 互联网百科 > 大数据

基于大数据+AI体系的数据治理实践

时间:2020-06-16 14:25:13  来源:  作者:

过去十年,农业银行信息化建设积累了海量的数据。为了盘活这些数据资源,充分发挥数据价值,在大数据平台和AI建设过程中,农业银行采取“统筹规划、顶层设计、分步实施”的策略,不断发展和完善数据治理内容,摸索出基于大数据+AI体系下的“一保八维”的数据治理框架,打造了全流程智能化的一站式数据治理平台,逐步解决了数据的全面性、准确性、完整性、一致性、及时性等问题,提升了数据资产管理水平和数据质量,提高了数据服务能力,为全行数据管理、产品创新、数字化转型等提供数据支撑。

提出“一保八维”的数据治理框架,全面促进高质量发展

数据治理是一个系统工程,通常采用自顶向下指导,自下而上推进。在农业银行大数据+AI建设过程中,逐渐摸索建立了涵盖研发、数据、业务、安全的企业级的“一保八维”的数据治理框架,为高效的数据质量、稳定的数据服务奠定基础。“一保”是指数据质量保障体系,包括建立高效的数据治理组织架构,为数据治理各项活动提供强有力的组织保障;建立全面严谨的制度章程,为数据治理快速有序推进提供制度依据;建立全流程、全生命周期的闭环数据治理流程,为全面进行数据治理提供标准化、规范化的闭环流程机制;打造数据治理平台,为数据治理提供自动、自助、智能化的平台支撑。“八维”是指企业级的数据模型管理、数据标准管理、元数据管理、主数据管理、数据质量管理、数据服务管理、数据安全管理和数据生命周期管理八大核心领域,实现对数据治理保障机制的支撑与落地。

采用数据质量闭环治理机制,有效提升数据质量

数据质量是指通过技术、业务手段使数据符合业务规则、数据标准等要求,保障数据的完整性、准确性、及时性和一致性的活动。农业银行在大数据平台数据治理过程中,通过建立数据质量闭环治理机制,以组织架构为保障,以流程制度为依据,落实责任主体,同规同源,稳步推进,有效提升数据质量。通过建立数据质量闭环治理机制,主要解决“是不是问题”“谁的问题”“谁来整改”“如何良性循环”等一系列痛点,形成健全的数据管控长效机制,推动数据问题标本兼治,全面提升数据的全面性、完整性、准确性、及时性、一致性,降低数据管理成本,提升数据质量,减少因数据不可靠导致的决策偏差和损失(见图1)。

基于大数据+AI体系的数据治理实践

 

图1 数据质量闭环治理机制

建立智能化数据治理平台,提供全流程一站式数据服务

借助大数据和AI技术,以元数据管理为基础,提升数据质量为目标,搭建智能化数据治理平台(见图2),有效提升了数据服务质量和能力,支撑了产品创新、服务创新、数字化转型等。

基于大数据+AI体系的数据治理实践

 

图2 数据治理平台总体架构

数据治理平台构建了9大功能模块,包括数据标准、元数据管理、数据质量、数据处理、主数据管理、数据资产管理、数据交换、数据生命周期管理、数据安全模块。解决了8大问题,包括业务系统缺少统一标准、数据质量差、变更对应的影响分析困难、业务系统间资产共享差、数据安全无保障、数据管理体系不完善、数据价值利用低、数据管理成本高且效率低等问题。凸显8个能力,包括海量存储和高效的数据处理能力、全面的数据覆盖能力、自动化的元数据采集能力、立体的数据管理能力、全流程一站式数据治理能力、自助式服务能力、智能化数据服务能力、数据安全管理能力。

数据治理平台依托农业银行特色的MPP数据库加Hadoop混搭架构的大数据平台,提供海量数据的存储和大规模并行计算能力,支持PB级以上的数据存储和海量数据加工处理,可在8小时内完成每天近100TB数据的加工,实现海量存储和高效的数据处理。采取“三范式融合维度建模”的方式,构建了1万多个模型,存储了逾数十PB的数据,实现全面的数据覆盖。通过采用可插拔的适配器方式实现各类数据源、多种元数据的自动采集,快速精确的纳入元数据管理,极大减少人工工作量,提升元数据的准确率。通过元数据管理系统为用户提供“横纵交错,静动结合”的元数据管理,实现立体的数据管理能力。数据治理平台9大功能模块可互相调用,打通数据治理各个环节,提供全流程一站式数据治理服务。从数据查询服务、BI业务报表应用、AI数据挖掘三类数据消费服务出发,让业务人员能够从多维数据中对数据特征、数据指标等内容进行提炼,从而达到业务自助式服务的目标。数据治理平台在数据治理的多个环节,充分利用AI技术,为数据治理提供智能化数据服务。依托保密安全和信息安全体系框架和管理要求,基于数据分类分级安全管理策略矩阵,通过基于统一安全认证平台接入、堡垒机、转储控制(TSM)、涉数操作行为审计在技术层面实现了事前、事中、事后安全控制,实现数据安全模块的研发落地,为数据服务体系奠定坚实的数据安全基础。

借力AI技术,实现数据治理向“智能化”转变

随着AI技术的兴起,数据治理技术和AI技术开始融合,使得数据治理开始向“智能化”转变。一是在数据质量检查时,针对少量核心检查规则,从大数据中选取训练数据样本,利用机器学习算法进行深度分析,提取公共特征和模型,可以用来定位数据质量原因,进行数据质量问题的预测,并进一步形成知识库,进而增强数据质量管理能力。二是在数据模型管理过程中,通过机器学习技术分析数据库中数据实体的引用热度,通过聚类算法自动识别数据模型间的内在关系,同时也可对数据模型质量的检测和评估。三是在数据传输监控中,利用机器学习技术对数据历史到位情况分析,预测数据的到位时间,为保证数据处理的及时性和应对数据晚到的影响提供支撑。四是在数据问题发现方面,可以应用NLP技术对住址、单位名称等数据进行词性、句式、语义分析,进行用户隐私数据发现和数据一致性问题发现等方面的探索,为避免隐私数据泄漏,治理数据不一致等问题提供治理线索,增强数据质量和数据安全管理能力。

通过业技联动,推进数据治理工作,提升数据质量

大数据平台下数据治理工作具有长期性、艰巨性和复杂性。农业银行数据治理工作遵循“顶层设计、问题驱动、急用先行、标本兼治、业技联动”的原则,采取“摸家底、建机制、搭平台”三步走方针,将数据治理分为常规数据治理和专项数据治理。在常规数据治理方面,优先通过技术手段解决数据问题;保证业技联动,一是联合信息管理部进行客户、合约、内部核算等业务主题的数据监测,提交质量监测报告;二是参与个金部、公司部等业务部门的检查规则制订;三是完成客户信息治理等多项数据管控的工作,初步形成问题发现、收集、分析、报告、整改、验证的协作机制,有效避免了数据“边治理、边污染”。在专题数据治理方面,根据业务部门的需求,开展个人客户、对公客户、个人账户、AI账户、非居民客户、信贷业务、交易对手、微捷贷等专题治理,形成了近千条质量监测规则,有效提升了数据质量。

总结与展望

基于大数据和AI体系的数据治理是银行业实施大数据+AI战略的重要基础和保障,它对数据价值挖掘、产品创新、服务创新、数字化转型等工作提供重要支撑。农业银行在大数据+AI建设过程中,采取“摸家底、建机制、搭平台”三步走方针,探索出“一保八维”的数据治理框架,搭建了基于大数据和AI技术的智能化的数据治理平台,为数据治理工作提供坚实的技术支撑,有力提升了数据资产质量、数据管理能力以及系统研发运维效率,形成了数据管控的长效机制,满足了大数据背景下商业银行精细化管理和产品创新、服务创新。未来,农业银行将更加深入研究和应用大数据和AI等金融科技技术,加快科技转换能力,利用科技赋能传统数据治理,加快农业银行的数字化转型。

基于大数据+AI体系的数据治理实践

 



Tags:AI   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
Retouch Pro是一款优秀的图像修饰插件,帮助ps用户更快地进行图像照片的修饰。 由于其强大的人工智能系统,您可以轻松就获得专业的效果,并且比以往的手动更快,效果更好,操作更简单...【详细内容】
2021-12-27  Tags: AI  点击:(7)  评论:(0)  加入收藏
Chrome 正在试验 CSS @container 查询器功能,这是由 Oddbird 的 Miriam Suzanne 和一群网络平台开发者支持的 CSS 工作组 Containment Level 3 规范。@container 查询器使我...【详细内容】
2021-12-23  Tags: AI  点击:(8)  评论:(0)  加入收藏
作为数据科学家或机器学习从业者,将可解释性集成到机器学习模型中可以帮助决策者和其他利益相关者有更多的可见性并可以让他们理解模型输出决策的解释。在本文中,我将介绍两个...【详细内容】
2021-12-17  Tags: AI  点击:(16)  评论:(0)  加入收藏
JetBrains 宣布,全新数据科学 IDE DataSpell 已正式发布!DataSpell 是 JetBrains 的新 IDE,专为参与探索性数据分析和 ML 模型原型设计的人员而设计。DataSpell 在一个符合人体...【详细内容】
2021-12-15  Tags: AI  点击:(25)  评论:(0)  加入收藏
AirPods固件升级最新版。没有什么可可以说的,赶紧生吧,感觉很完美。重低音加强隔音加强。看来苹果要出新耳机了,如果你还想换耳机苹果,你是苹果手机就在等等,相信在明年的五月份...【详细内容】
2021-12-14  Tags: AI  点击:(16)  评论:(0)  加入收藏
一文看懂"async"和“await”关键词是如何简化了C#中多线程的开发过程当我们使用需要长时间运行的方法(即,用于读取大文件或从网络下载大量资源)时,在同步的应用程序中,应用程序本...【详细内容】
2021-12-01  Tags: AI  点击:(24)  评论:(0)  加入收藏
基于算法的业务或者说AI的应用在这几年发展得很快。但是,在实际应用的场景中,我们经常会遇到一些非常奇怪的偏差现象。例如,Facebook将黑人标记为灵长类动物、城市图像识别系统...【详细内容】
2021-11-08  Tags: AI  点击:(32)  评论:(0)  加入收藏
一、背景介绍在网上冲浪少不了用到搜索引擎,而很多朋友都习惯把Google视为第一个选择对象。当然Google无论在搜索速度还是结果关联性方面都是十分优秀的。但百度(http://www.b...【详细内容】
2021-11-05  Tags: AI  点击:(31)  评论:(0)  加入收藏
由于一些特殊原因,使用国内手机号码注册谷歌邮箱会有各种限制,最常见的一种就是此电话号码无法用于进行验证,这就让人很无语了,很多朋友都卡在了这里。本期就针对国内手机号码注...【详细内容】
2021-10-27  Tags: AI  点击:(39)  评论:(0)  加入收藏
新京报贝壳财经讯(记者 罗亦丹)10月25日,创新工场董事长兼首席执行官李开复在2021科大讯飞全球1024开发者节上表示,AI自动化、先进计算架构、新能源技术和生命科学技术四个领域...【详细内容】
2021-10-26  Tags: AI  点击:(31)  评论:(0)  加入收藏
▌简易百科推荐
前言什么是数据脱敏数据脱敏是指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护常用脱敏规则替换、重排、加密、截断、掩码良好的数据脱敏实施1、尽...【详细内容】
2021-12-28  linyb极客之路    Tags:数据脱敏   点击:(2)  评论:(0)  加入收藏
张欣安科瑞电气股份有限公司 上海嘉定 201801 摘要:随着电力行业各系统接入,海量数据涌现,如何利用电网信息化中大量数据,对客户需求进行判断分析,服务于营销链条,提升企业市场竞...【详细内容】
2021-12-14  安科瑞张欣    Tags:大数据   点击:(10)  评论:(0)  加入收藏
1、什么是数据分析结合分析工具,运用数据分析思维,分析庞杂数据信息,为业务赋能。 2、数据分析师工作的核心流程:(1)界定问题:明确具体问题是什么;●what 发生了什么(是什么)●why 为...【详细内容】
2021-12-01  逆风北极光    Tags:大数据   点击:(26)  评论:(0)  加入收藏
在实际工作中,我们经常需要整理各个业务部门发来的数据。不仅分散,而且数据量大、格式多。单是从不同地方汇总整理这些原始数据就花了大量的时间,更不用说还要把有效的数据收集...【详细内容】
2021-11-30  百数    Tags:数据   点击:(21)  评论:(0)  加入收藏
数据作为新的生产要素,其蕴含的价值日益凸显,而安全问题却愈发突出。密码技术,是实现数据安全最经济、最有效、最可靠的手段,对数据进行加密,并结合有效的密钥保护手段,可在开放环...【详细内容】
2021-11-26  炼石网络    Tags:数据存储   点击:(17)  评论:(0)  加入收藏
导读:网易大数据平台的底层数据查询引擎,选用了Impala作为OLAP查询引擎,不但支撑了网易大数据的交互式查询与自助分析,还为外部客户提供了商业化的产品与服务。今天将为大家分享...【详细内容】
2021-11-26  DataFunTalk    Tags:大数据   点击:(15)  评论:(0)  加入收藏
导读:数据挖掘是一种发现知识的手段。数据挖掘要求数据分析师通过合理的方法,从数据中获取与挖掘项目相关的知识。作者:赵仁乾 田建中 叶本华 常国珍来源:华章科技数据挖掘是一...【详细内容】
2021-11-23  华章科技  今日头条  Tags:数据挖掘   点击:(20)  评论:(0)  加入收藏
今天再给大家分享一个不错的可视化大屏分析平台模板DataColour。 data-colour 可视化分析平台采用前后端分离模式,后端架构设计采用微服务架构模式。 前端技术:Angularjs、Jq...【详细内容】
2021-11-04  web前端进阶    Tags:DashboardClient   点击:(40)  评论:(0)  加入收藏
在Kubernetes已经成了事实上的容器编排标准之下,微服务的部署变得非常容易。但随着微服务规模的扩大,服务治理带来的挑战也会越来越大。在这样的背景下出现了服务可观测性(obs...【详细内容】
2021-11-02  大数据推荐杂谈    Tags:Prometheus   点击:(40)  评论:(0)  加入收藏
同一产品对老客户的要价竟然比新客户要高?这是当下“大数据杀熟”的直接结果。近年来,随着平台经济的蓬勃发展,大数据在为用户服务之外,也引发了多种不合理现象。为了有效遏制“...【详细内容】
2021-10-29    海外网   Tags:大数据   点击:(31)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条