您当前的位置:首页 > 互联网百科 > 大数据

解密OneEntity体系

时间:2020-07-15 15:23:24  来源:  作者:

一、数据孤岛

阿里巴巴作为一家包含多条业务线的公司,如电商金融、广告、文化、教育、娱乐、设备和社交等领域,数据区域包含国内、国外;数据场景包含线上的人货场钱、线下的人货场钱位置等数据,以及物流、用餐、咨询、影视、出行、阅读、音乐和健康等相关数据。

仅是与人相关的数据就包含业务账号信息、PC cookie、无线IMEI与IDFA等设备标志、身份属性等。

而随着人们互联网行为的多样化,如果每天都有数千亿条实体数据产生,而这些数据都分属于不同业务单元,那么数据就很容易孤立。

解密OneEntity体系

 

以前总是不理解数据孤岛这一部分,明明已经建立了onedata体系,做好了各业务线数据接入,ODS层数据全面接管,明明数据都汇总到了一块,为何还说数据孤岛呢?

直到真正开始做用户画像这一工作才发现,底层的指标体系往往是直接面向各个业务线内,缺乏一个业务线间的关联,这是由业务局限性导致的。比如说,你是淘宝的运营人员,那你会关注钉钉的指标体系是怎样的吗?

答案是显然不会。

那这样就产生了数据的断层,单是从底层的指标层,用户在钉钉的行为习惯,淘宝的人员是无法获知的。那如果我作为淘宝的人员,既想知道他在淘宝上购物行为,也想知道他在钉钉、支付宝、优酷等地方的行为习惯,又该从何得知呢?

二、数据只有融通才能真正产生价值

为打破数据孤岛,创造更大的数据价值,阿里设计了OneEntity来提供全域数据与服务。OneEntity体系主要包含统一实体、全域标签、全域关系、全域行为4大类。

解密OneEntity体系

 

1.OneEntity统一实体

将若干个实体归拢到一起,并命名为OneEntity,可分为一般质量、高质量、高价值OneEntity。

2.GProfile全域标签

基于归拢后的数据对OneEntity进行贴标签的操作。在OneEntity体系中,如何为OneEntity贴上标签并找出高质量、高价值的OneEntity是最常见的问题。

这几离不开标签的萃取能力,那阿里是怎么萃取标签的呢?

解密OneEntity体系

 

1)有效

一方面,主动去找人口学、社会学等学科的教授,学习与“人”相关的理论知识;

另一方面,调研了很多业界的标签分类体系,取长补短。

最终,将“人”的立体刻画划分为“人的核心属性”和“人的向往与需求”2大部分,具体包含4大类:

人的核心属性,可分为自然属性、社会属性。

-自然属性:是指人的肉体存在及其特征,是人自出生后自然存在的,一般不会因人为因素发生较大的改变。例如“性别”“生肖”“年龄”“身高”“体重”等。

-社会属性:指人在实践活动基础上产生的一切社会关系的总和。人一旦进入社会就会产生社会属性。例如经济状况、家庭状况、社会地位、政治宗教、地理位置、价值观等。

人的向往与需求,可分为兴趣偏好、行为消费偏好。

-兴趣偏好:是人堆非物化对象的内在心理向往与外在行为表达,是一种法子内心的本能喜好,与物质无必然关系。例如渴望爱情、需要安全感、讨厌脏乱环境等。

-行为消费偏好:是人对物化对象的需求与外在行为表达,涉及各行业,与物质世界存在千丝万缕的联系。例如母婴行业偏好、美妆行业偏好、洗护行业偏好、家装行业偏好等。

在以上四大类的基础上,我们又尝试根据不同的业务形态进一步细分二级、三级分类。

2)高速

标签的萃取工作包含:数据采集;清洗,去噪声并统一;反复试用并确定最佳算法及模型;为模型选择计算因子并对模型中的每一个计算因子调配权重;产出标签质量评估报告以辅助验收。

我们随机抽查了若干个在用的标签,预估工作量和工作周期,一个有价值的标签的萃取,平均耗时2周。

慢的主要原因,一是由于萃取流程复杂,每个标签萃取都依赖底层的基础数据,而较少依赖上一层汇总的数据中间层数据;二是大量重复的人力,对应的标签萃取逻辑时可以复用的,包含算法的选择、模型训练和计算因子的加权等,但由于不同人来做,造成了很多重复工作。

标签萃取过程复杂,那有什么可以参考的流程呢?

解密OneEntity体系

 

首先,数据源层面:建设一套完整的数据源,以OneEntity体系为核心,将OneEntity相关实体及其行为全部串联起来,与存量的标签一起作为数据源。

其次,标签计算层面:将标签萃取逻辑沉淀为2种,分别对应到偏好类标签和分类预测类标签的工具型产品的生产过程中,包含计算因子、权重等业务规则、数据样本选择、模型与算法选择等。

最后,标签监测层面:沉淀质量评估报告和生产监测、上线等管理流程。

当一整套工具型产品上线之后,批量生产十几个同类型标签只需要2天左右,这是因为在补足数据源、确定业务规则、选择数据样本、选择算法与模型的过程中,减少了大量的代码开发与模型训练的工作。

在这个过程中,参与的角色也发生了变化,从原本的以数据产品经理、数仓工程师、数据科学家为主导,转变为对业务更为熟悉的业务人员、数据分析师为主导。

3.GRelation全域关系

找到对象的关联关系,当OneEntity代表人时,就可以找出他的亲属、朋友、校友和同事等;当OneEntity代表商品时,就可以找出他的上下游商品/货等。

4.GBehavior全域行为

将与OneEntity相关的实习及行为关联起来,形成一套用户行为体系。

如:

-姓名、邮箱、地址等,这是现实世界中的唯一标志,就像OneEntity代表着你在大数据世界里的唯一标志。

-籍贯、年龄、政治面貌、宗教信仰等,这是现实世界中的标签画像

-父母、子女、夫妻等,天生或后天产生的一系列关系,代表着GRelation在大数据世界中的关系

-何年何月读大学、何年何月第一次参加工作、何年何月获得某项奖励以及证明人是谁等

在大数据的世界里,将孤岛数据实现融通并加以萃取,可以围绕一个主题展开全面剖析。

作者: 草帽小子



Tags:OneEntity体系   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
一、数据孤岛阿里巴巴作为一家包含多条业务线的公司,如电商、金融、广告、文化、教育、娱乐、设备和社交等领域,数据区域包含国内、国外;数据场景包含线上的人货场钱、线下的人...【详细内容】
2020-07-15  Tags: OneEntity体系  点击:(477)  评论:(0)  加入收藏
▌简易百科推荐
前言什么是数据脱敏数据脱敏是指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护常用脱敏规则替换、重排、加密、截断、掩码良好的数据脱敏实施1、尽...【详细内容】
2021-12-28  linyb极客之路    Tags:数据脱敏   点击:(2)  评论:(0)  加入收藏
张欣安科瑞电气股份有限公司 上海嘉定 201801 摘要:随着电力行业各系统接入,海量数据涌现,如何利用电网信息化中大量数据,对客户需求进行判断分析,服务于营销链条,提升企业市场竞...【详细内容】
2021-12-14  安科瑞张欣    Tags:大数据   点击:(10)  评论:(0)  加入收藏
1、什么是数据分析结合分析工具,运用数据分析思维,分析庞杂数据信息,为业务赋能。 2、数据分析师工作的核心流程:(1)界定问题:明确具体问题是什么;●what 发生了什么(是什么)●why 为...【详细内容】
2021-12-01  逆风北极光    Tags:大数据   点击:(26)  评论:(0)  加入收藏
在实际工作中,我们经常需要整理各个业务部门发来的数据。不仅分散,而且数据量大、格式多。单是从不同地方汇总整理这些原始数据就花了大量的时间,更不用说还要把有效的数据收集...【详细内容】
2021-11-30  百数    Tags:数据   点击:(21)  评论:(0)  加入收藏
数据作为新的生产要素,其蕴含的价值日益凸显,而安全问题却愈发突出。密码技术,是实现数据安全最经济、最有效、最可靠的手段,对数据进行加密,并结合有效的密钥保护手段,可在开放环...【详细内容】
2021-11-26  炼石网络    Tags:数据存储   点击:(17)  评论:(0)  加入收藏
导读:网易大数据平台的底层数据查询引擎,选用了Impala作为OLAP查询引擎,不但支撑了网易大数据的交互式查询与自助分析,还为外部客户提供了商业化的产品与服务。今天将为大家分享...【详细内容】
2021-11-26  DataFunTalk    Tags:大数据   点击:(15)  评论:(0)  加入收藏
导读:数据挖掘是一种发现知识的手段。数据挖掘要求数据分析师通过合理的方法,从数据中获取与挖掘项目相关的知识。作者:赵仁乾 田建中 叶本华 常国珍来源:华章科技数据挖掘是一...【详细内容】
2021-11-23  华章科技  今日头条  Tags:数据挖掘   点击:(20)  评论:(0)  加入收藏
今天再给大家分享一个不错的可视化大屏分析平台模板DataColour。 data-colour 可视化分析平台采用前后端分离模式,后端架构设计采用微服务架构模式。 前端技术:Angularjs、Jq...【详细内容】
2021-11-04  web前端进阶    Tags:DashboardClient   点击:(40)  评论:(0)  加入收藏
在Kubernetes已经成了事实上的容器编排标准之下,微服务的部署变得非常容易。但随着微服务规模的扩大,服务治理带来的挑战也会越来越大。在这样的背景下出现了服务可观测性(obs...【详细内容】
2021-11-02  大数据推荐杂谈    Tags:Prometheus   点击:(40)  评论:(0)  加入收藏
同一产品对老客户的要价竟然比新客户要高?这是当下“大数据杀熟”的直接结果。近年来,随着平台经济的蓬勃发展,大数据在为用户服务之外,也引发了多种不合理现象。为了有效遏制“...【详细内容】
2021-10-29    海外网   Tags:大数据   点击:(31)  评论:(0)  加入收藏
相关文章
    无相关信息
最新更新
栏目热门
栏目头条