一、数据治理的定义
关于数据治理,国际数据治理研究所(DGI)给出的定义是:“数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来执行,该模型描述了谁(Who)能根据什么信息,在什么时间(When)和情况(Where)下,用什么方法(How),采取什么行动(What)。”
百度百科的解释:“数据治理是组织中涉及数据使用的一整套管理行为。由企业数据治理部门发起并推行,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。”简单地来说,数据治理就是企业对数据的来源、质量和使用进行规范化的一整套流程。
二、数据治理的目的
确保企业数据的质量,可用性,可集成性,安全性和易用性。数据是公司的资产,组织必须从中获取业务价值,最大程度地降低风险并寻求方法进一步开发和利用数据,而这一切就是数据治理需要完成的工作,数据治理一般来说主要包括以下三部分工作:
定义数据资产的具体职责和决策权,应用角色分配决策需要执行的确切任务的决策和规范活动。
为数据管理实践制定企业范围的原则,标准,规则和策略。数据的一致性,可信性和准确性对于确保增值决策至关重要。
建立必要的流程,以提供对数据的连续监视和控制实践并帮助在不同组织职能部门之间执行与数据相关的决策,以及业务用户类别。
三、数据治理的驱动力
企业做数据治理的驱动力一般包括如下部分:
提升业务敏捷
通过建立一致的企业数据模型,统一的组织数据的展示和利用,从而让业务人员能够更快的获取用户及产品相关数据,获得最快的市场信息和洞察,从而能够提升业务对于市场的响应力,让业务更敏捷。
降低运营成本
众多案例证明,可以通过精细化和自动化所有可能的数据降低运营成本。这些流程大部分都流经多个系统,组织的多个业务部门的数据库和应用程序,例如:财务,人力资源资源,销售和市场营销等。提供统一而清晰的数据视图和拥有的信息可以帮助消除许多手动任务并解决几个冗余问题使成本和复杂性保持在较高水平。
管理风险和合规
企业合规和风险管理很重要,尤其是受到严格监管的金融服务行业中,风险管理以及遵守外部法规和内部政策会引入其他要求数据使用的透明性以及基于这些数据的报告操作。通过定义所有必要的数据标准,政策和流程并形成具有明确角色和职责的框架,可控制这些策略应用的风险。
数据治理的目的与意义中琛魔方大数据平台表示数据治理中最重要的因素之一是与所有负责收集、管理和使用数据的团队和个人保持一致。数据治理对企业非常重要。对于企业来说,数据治理策略的第一步是选择合适的数据治理工具。
四、数据治理项目的关键点
1、识别数据和维护数据目录
由于各种数据的爆炸式增长,对数据进行编目并使该目录可供用户使用至关重要。组织需要一个可以轻松扩充和更新的业务术语表,因为新数据和现有数据的新用途将发挥作用。此外,环境能够跟踪与数据相关的各种资产至关重要。它的使用和加工,诸如MapReduce作业,用户方法(如可视化)和数据分析对象(如模型,子模型和源数据集)等技术组件都必须能够在数据字典中轻松表示。
2、探索该数据以识别机会
获得数据目录后,您需要一种很好的方法来查找该目录中的内容。组织内的不同角色需要以不同的方式看待事物。这应该与基于角色的视图和模板相结合,以及按角色定制导航,以使业务用户尽可能简单地找到他或她需要的内容。可以使用先进的机器学习和人工智能来帮助找到适当的数据。
3、确保系统可靠性和可用性
虽然高可用性和灾难恢复等概念通常不被归类为数据治理策略的组件,但这些功能对于数据是有价值资产的任何环境都至关重要。因此,数据治理策略必须包含高可用性和灾难恢复策略。毕竟,如果系统无法可靠地保持运行,那么数据将与相关的数据治理策略一起贬值。
4、保持数据的有效性
保持数据的有效性首先要建立围绕数据的系统政策和控制,并确保测量的数据准确性适合其用途。工作流和策略管理功能使了解数据的业务用户可以轻松地协作,协商和批准策略和过程。与IT服务管理系统集成后,可以将策略信息一旦最终确定,即可转移到IT部门进行实施,而不会丢失上下文以及策略及其要求的细节。
5、保护敏感数据
保护敏感数据需要几个步骤。首先,必须确定数据及其敏感性。其次,必须有一种方法可以明确说明围绕数据做什么以及由谁做的政策。第三,必须有一种系统的方法来收集这些信息并将其传播给数据的消费者和能够对信息实施物理控制的技术人员。这三个步骤通常是由实现合规性的需要驱动的,但也与您自己的内部政策相关联。
五、数据治理该怎么做?
1、做好长远计划,把所涉及的数据规划好
数据治理是一项耗时冗长的系统的工程,不仅要在组织方面有好的计划策略,更要在机制和制定标准等方面统筹谋划。在治理期间,要及时不断地结合当下情况调整组织结构,明确数据管理的关键职责,自上而下的推动数据治理工作。
2、健全相关体系,力争把数据管理好。
做好数据分级管理。综合考虑个人、社会、国家等多方面的因素,将数据按照一定的标准进行分级,基于相关目录将数据进行分级。对于不同的数据等级,理应采取不同的措施,实现精细化管理。
3、加强安全管控,保护好数据。
在数据治理过程中,一定要分析潜在的风险,对突发情况做好应对措施,加强安全管理控制,一定要防止非法操作窃取用户的信息,严防用户数据的泄露、篡改和滥用。