进入到大数据时代,数据领域里的工程师、分析师和科学家们可以很轻易的使用开源世界的各种技术(比如离线处理有MapReduce、Spark,实时处理有Flink、Spark Streaming,数据存储有HDFS、Hbase等等)处理数据、应用数据,但是如何将繁杂的数据结构、庞大的数据集、不断变化的元数据信息变成资产,变成可积累的知识,却是一个很难回答的问题。对于业务驱动的公司,做数据治理并不能直接产生业务价值和效益;技术驱动的公司,数据治理也没有很高的技术含量,但是一个没有经过治理的数据,只会随着业务规模的增大,越来越混乱,直到没有人想去碰。因此如何让这繁杂的数据变成数据资产,让数据团队不做重复地工作,拥有更高的效率成了每一个数据团队需要解决的问题。
在大数据领域,数据治理可以说是高频次的出现,那么为什么需要数据治理?应该怎么来实施数据治理。
一、数据治理的背景
说起数据治理,往往会跟数据仓库进行对标,数据治理跟数据仓库是什么关系呢?一般而言数据仓库主要解决多源数据汇聚、存储和数据分析的问题,在数据仓库的体系中极少提到数据资产化的概念,那么数据治理在传统的数据仓库的基础上,更多的体现数据资产化的概念,所以数据治理的核心能力并不是有限的数据分析,而是数据价值的充分挖掘和体现。
那么数据治理为什么不叫数据管理呢?数据管理更多的是如何来管理数据,而数据治理更充分的体现数据的价值,通过一系列的治理活动来提升数据的价值,发挥数据应有的作用,使数据驱动应用。
另外,数据治理与当前比较火热的数据中台又是什么关系呢?我认为数据治理是数据中台的技术实现,通过数据治理的技术体系来建立数据中台。
综上所述,数据治理就是在数据爆发式增长的形势下,数据价值发挥越来越显得紧迫和重要,甚至可以说未来市场的竞争就是数据价值的竞争。所以只有建立完整的数据治理体系,才能保障数据内容的质量,才能真正有效的挖掘数据价值,提升竞争力。
二、数据治理的设计方法
这里就不长篇大论的描述数据治理的设计方案了,主要以关键点的方式来进行简要阐述。
首先我们要考虑数据治理的目标,其一对数据通过统一的视图进行管理;其二对多源数据进行标准化处理;其三数据资产化最重要的活动,数据价值挖掘的基础。
伴随以互联网、大数据、物联网、5G、AI、数据中台、新基建等为代表的新一代信息技术发展,企业数字化转型的需求加剧,但企业转型过程中,各种数据信息会成为转型的首要内容,而数据治理则是转型工作的重中之重。通常来讲数据治理作为一项系统性工程,在企业数字化转型过程中暴露的问题也较多,如:
数据异构系统多,信息系统孤岛现象普遍存在;
数据整合难,数据标准不统一、质量差、资源共享与协同支撑作用薄弱、价值发掘难度大等;
方法及技术局限,传统的数据治理技术方法存在较大的局限性,咨询-标准-系统建设的模式往往在咨询后就难以为继,不是找不到落地抓手,就是因工作量巨大而半途而废。
…….
面临当下这些问题,企业如何突破现有瓶颈让数据治理项目可以顺利进行,成功实现企业数字化转型?亿信华辰数据治理专题直播给你安排上了,有效助力企业数字化转型。