LRU(Least recently used)最近最少使用,它的核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。因此 LRU 算法会根据数据的历史访问记录来进行排序,如果空间不足,就会淘汰掉最近最少使用的数据。
由于 LRU 算法会将最近使用的数据优先级上升,因此需要数据结构支持排序,链表非常合适。
为什么不考虑数组呢?
由于 LRU 算法,一般都会应用在访问比较频繁的场景,因此,对数据的移动会频繁,而数组一旦移动,需要将移动到值的位置后面的所有数据的位置全部改变,效率比较低,不推荐使用。
前面我们分析到 LRU 的算法实现,可以使用链表实现,JAVA 中 LinkedHashMap 就是一个双向链表。
LinkedHashMap是HashMap的子类,在HashMap数据结构的基础上,还维护着一个双向链表链接所有entry,这个链表定义了迭代顺序,通常是数据插入的顺序。
我们来看看LinkedHashMap的源码:
从源码中的定义可以看到,accessOrder 属性可以指定遍历 LinkedHashMap 的顺序,true 表示按照访问顺序,false 表示按照插入顺序,默认为 false。
由于LRU对访问顺序敏感,因此使用true来简单验证一下:
public class LRUTest {
public static void main(String[] args) {
LinkedHashMap<String, Object> map = new LinkedHashMap<>(16, 0.75f, true);
map.put("a", 1);
map.put("b", 2);
map.put("c", 3);
System.out.println("before get " + map);
map.get("a");
System.out.println("after get" + map);
}
}
运行结果如下:
before get {a=1, b=2, c=3}
after get{b=2, c=3, a=1}
可以看到通过 accessOrder = true,可以让 LinkedHashMap 按照访问顺序进行排序。
那么 LinkedHashMap 是怎么做的呢?
我们看下get方法
public V get(Object key) {
Node<K,V> e;
// 获取node
if ((e = getNode(hash(key), key)) == null)
return null;
// 如果 accessOrder = true,则执行afterNodeAccess方法
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
再看下afterNodeAccess方法,发现进行移动节点,到此移动节点的原理我们了解了
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
目前,如果使用 LinkedHashMap 做LRU,还有一个问题困扰着我们,就是如果容量有限,该如何淘汰旧数据?
我们回过头看看 put 方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mApping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
从put方法中逐步看下来,最终我们发现,如果 removeEldestEntry(first) 方法返回true,则会移除 head,这样就淘汰了最近都没使用的数据。完全符合LRU。
根据上面分析,我们可以如下实现一个最简单的LRU
public class LRUCache<K,V> extends LinkedHashMap<K,V> {
private int cacheSize;
public LRUCache(int cacheSize) {
// 注意:此处需要让 accessOrder = true
super(cacheSize, 0.75f, true);
this.cacheSize = cacheSize;
}
/**
* 判断元素个数是否超过缓存的容量,超过需要移除
*/
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > cacheSize;
}
}