如果你目前在一个数据或商业智能团队工作,你的任务之一可能是制作一些每日、每周或每月的报告。
虽然获得这些报告并不困难,但还是需要花费不少时间。我们的宝贵时间应该花在更困难的任务上,如训练神经网络或建立数据管道架构。
因此,对于这些平凡的重复性报告,节省我们时间的最好方法是建立一个网络应用程序,其他团队可以自己访问和下载报告。
我说的不是Tableau或PowerBI这样的付费工具(如果公司预算充足的话,你可以使用它们)。有一些高级的网络框架,比如Flask和Django,通常用于建立一个正常运作的网站。
但是,对于一个快速的网络仪表盘来报告指标和数字,你可以考虑使用Streamlit,这是一个相对较新的网络框架,是为ML从业者和数据科学团队建立的。它使用起来非常简单和直观。
我将通过使用一个群组分析的例子来指导你如何构建和部署它。
对于每个部分,我将介绍一个代码模板(你可以在你自己的项目中重新使用)和我的代码(用于本文中使用的队列分析例子)。
我们必须创建一个Python文件,以后我们可以从终端调用该文件,在浏览器上显示结果。
你可以给这个文件取任何你想要的名字。这里我把它叫做cohort-demo.py。
# 这些数据可以在公众号后台回复【云朵君】,联系作者获取。
# 1.导入必要的库
import pandas as pd
import numpy as np
import streamlit as st
# 2.设置页面配置
st.set_page_config(
page_title="This is my title", # 页面的标题
page_icnotallow="