https://gpu.rocks
你是否曾经尝试过运行复杂的计算,却发现它需要花费很长时间,并且拖慢了你的进程?
有很多方法可以解决这个问题,例如使用web worker或后台线程。GPU减轻了CPU的处理负荷,给了CPU更多的空间来处理其他进程。同时,web worker仍然运行在CPU上,但是运行在不同的线程上。
在该初学者指南中,我们将演示如何使用GPU.js执行复杂的数学计算并提高JAVAScript应用的性能。
GPU.js是一个针对Web和Node.js构建的JavaScript加速库,用于在图形处理单元(GPGPU)上进行通用编程,它使你可以将复杂且耗时的计算移交给GPU而不是CPU,以实现更快的计算和操作。还有一个备用选项:在系统上没有GPU的情况下,这些功能仍将在常规JavaScript引擎上运行。
当你要执行复杂的计算时,实质上是将这种负担转移给系统的GPU而不是CPU,从而增加了处理速度和时间。
高性能计算是使用GPU.js的主要优势之一。如果你想在浏览器中进行并行计算,而不了解WebGL,那么GPU.js是一个适合你的库。
为什么要使用GPU执行复杂的计算的原因不胜枚举,有太多的原因无法在一篇文章中探讨。以下是使用GPU的一些最值得注意的好处。
如果你认为你的处理器可以胜任,你不需要GPU.js,看看下面这个GPU和CPU运行计算的结果。
如你所见,GPU比CPU快22.97倍。
考虑到这种速度水平,JavaScript生态系统仿佛得到了一个可以乘坐的火箭。GPU可以帮助网站更快地加载,特别是必须在首页上执行复杂计算的网站。你不再需要担心使用后台线程和加载器,因为GPU运行计算的速度是普通CPU的22.97倍。
gpu.createKernel 方法创建了一个从JavaScript函数移植过来的GPU加速内核。
与GPU并行运行内核函数会导致更快的计算速度——快1-15倍,这取决于你的硬件。
为了展示如何使用GPU.js更快地计算复杂的计算,让我们快速启动一个实际的演示。
安装
sudo apt install mesa-common-dev libxi-dev // using linux
npm
npm install gpu.js --save
// OR
yarn add gpu.js
在你的Node项目中要导入GPU.js。
import { GPU } from ('gpu.js')
// OR
const { GPU } = require('gpu.js')
const gpu = new GPU();
乘法演示
在下面的示例中,计算是在GPU上并行完成的。
首先,生成大量数据。
const getArrayValues = () => {
// 在此处创建2D arrary
const values = [[], []]
// 将值插入第一个数组
for (let y = 0; y < 600; y++){
values[0].push([])
values[1].push([])
// 将值插入第二个数组
for (let x = 0; x < 600; x++){
values[0][y].push(Math.random())
values[1][y].push(Math.random())
}
}
// 返回填充数组
return values
}
创建内核(运行在GPU上的函数的另一个词)。
const gpu = new GPU();
// 使用 `createKernel()` 方法将数组相乘
const multiplyLargeValues = gpu.createKernel(function(a, b) {
let sum = 0;
for (let i = 0; i < 600; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([600, 600])
使用矩阵作为参数调用内核。
const largeArray = getArrayValues()
const out = multiplyLargeValues(largeArray[0], largeArray[1])
输出
console.log(out[y][x]) // 将元素记录在数组的第x行和第y列
console.log(out[10][12]) // 记录输出数组第10行和第12列的元素
你可以按照GitHub上指定的步骤运行基准测试。
npm install @gpujs/benchmark
const benchmark = require('@gpujs/benchmark')
const benchmarks = benchmark.benchmark(options);
options 对象包含可以传递给基准的各种配置。
前往GPU.js官方网站查看完整的计算基准,这将帮助你了解使用GPU.js进行复杂计算可以获得多少速度。
在本教程中,我们详细探讨了GPU.js,分析了它的工作原理,并演示了如何进行并行计算。我们还演示了如何在你的Node.js应用中设置GPU.js。
原文:https://blog.zhangbing.site/2020/11/30/improving-javascript-performance-with-gpu-js/
最近整理了一份优质视频教程资源,想要的可以关注我然后私信“666”即可免费领取哦!如果文章对你有所启发和帮助,可以点个关注、收藏、转发,也可以留言讨论,这是对作者的最大鼓励。