您当前的位置:首页 > 电脑百科 > 数据库 > MYSQL

阿里大佬作出解释:MySQL真的不建议delete删除数据

时间:2022-02-28 10:01:44  来源:  作者:程序员阿远

前言

我负责的有几个系统随着业务量的增长,存储在MySQL中的数据日益剧增,我当时就想现在的业务方不讲武德,搞偷袭,趁我没反应过来把很多表,很快,很快啊都打到了亿级别,这就导致跟其Join的表的SQL变得很慢,对的应用接口的response time也变长了,影响了用户体验。

事后我分析原因发现,发现有些表的数据量增长很快,对应SQL扫描了很多无效数据,导致SQL慢了下来,通过确认之后,这些大表都是一些流水、记录、日志类型数据,只需要保留1到3个月,此时需要对表做数据清理实现瘦身,一般都会想到用insert + delete的方式去清理。

这篇文章我会从InnoDB存储空间分布,delete对性能的影响,以及优化建议方面解释为什么不建议delete删除数据。

InnoDB存储架构

阿里大佬作出解释:MySQL真的不建议delete删除数据

 

从这张图可以看到,InnoDB存储结构主要包括两部分:逻辑存储结构和物理存储结构。

逻辑上是由表空间tablespace —> 段segment或者inode —> 区Extent ——>数据页Page构成,Innodb逻辑管理单位是segment,空间分配的最小单位是extent,每个segment都会从表空间FREE_PAGE中分配32个page,当这32个page不够用时,会按照以下原则进行扩展:如果当前小于1个extent,则扩展到1个extent;当表空间小于32MB时,每次扩展一个extent;表空间大于32MB,每次扩展4个extent。

物理上主要由系统用户数据文件,日志文件组成,数据文件主要存储MySQL字典数据和用户数据,日志文件记录的是data page的变更记录,用于MySQL Crash时的恢复。

Innodb表空间

InnoDB存储包括三类表空间:系统表空间,用户表空间,Undo表空间。

**系统表空间:**主要存储MySQL内部的数据字典数据,如information_schema下的数据。

**用户表空间:**当开启innodb_file_per_table=1时,数据表从系统表空间独立出来存储在以table_name.ibd命令的数据文件中,结构信息存储在table_name.frm文件中。

**Undo表空间:**存储Undo信息,如快照一致读和flashback都是利用undo信息。

从MySQL 8.0开始允许用户自定义表空间,具体语法如下:

CREATE TABLESPACE tablespace_name
    ADD DATAFILE 'file_name'               #数据文件名
    USE LOGFILE GROUP logfile_group        #自定义日志文件组,一般每组2个logfile。
    [EXTENT_SIZE [=] extent_size]          #区大小
    [INITIAL_SIZE [=] initial_size]        #初始化大小 
    [AUTOEXTEND_SIZE [=] autoextend_size]  #自动扩宽尺寸
    [MAX_SIZE [=] max_size]                #单个文件最大size,最大是32G。
    [NODEGROUP [=] nodegroup_id]           #节点组
    [WAIT]
    [COMMENT [=] comment_text]
    ENGINE [=] engine_name
复制代码

这样的好处是可以做到数据的冷热分离,分别用HDD和SSD来存储,既能实现数据的高效访问,又能节约成本,比如可以添加两块500G硬盘,经过创建卷组vg,划分逻辑卷lv,创建数据目录并mount相应的lv,假设划分的两个目录分别是/hot_data 和 /cold_data。

这样就可以将核心的业务表如用户表,订单表存储在高性能SSD盘上,一些日志,流水表存储在普通的HDD上,主要的操作步骤如下:

#创建热数据表空间
create tablespace tbs_data_hot add datafile '/hot_data/tbs_data_hot01.dbf' max_size 20G;
#创建核心业务表存储在热数据表空间
create table booking(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_hot;
#创建冷数据表空间
create tablespace tbs_data_cold add datafile '/hot_data/tbs_data_cold01.dbf' max_size 20G;
#创建日志,流水,备份类的表存储在冷数据表空间
create table payment_log(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_cold;
#可以移动表到另一个表空间
alter table payment_log tablespace tbs_data_hot;
复制代码

Inndob存储分布

创建空表查看空间变化

mysql> create table user(id bigint not null primary key auto_increment, 
    -> name varchar(20) not null default '' comment '姓名', 
    -> age tinyint not null default 0 comment 'age', 
    -> gender char(1) not null default 'M'  comment '性别',
    -> phone varchar(16) not null default '' comment '手机号',
    -> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
    -> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
    -> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';
Query OK, 0 rows affected (0.26 sec)
复制代码
# ls -lh user1.ibd 
-rw-r----- 1 mysql mysql 96K Nov  6 12:48 user.ibd
复制代码

设置参数innodb_file_per_table=1时,创建表时会自动创建一个segment,同时分配一个extent,包含32个data page的来存储数据,这样创建的空表默认大小就是96KB,extent使用完之后会申请64个连接页,这样对于一些小表,或者undo segment,可以在开始时申请较少的空间,节省磁盘容量的开销。

# Python/ target=_blank class=infotextkey>Python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000000, page type <Freshly Allocated Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6:      #总共分配的页数
Freshly Allocated Page: 2     #可用的数据页
Insert Buffer Bitmap: 1       #插入缓冲页
File Space Header: 1          #文件空间头
B-tree Node: 1                #数据页
File Segment inode: 1         #文件端inonde,如果是在ibdata1.ibd上会有多个inode。
复制代码

插入数据后的空间变化

mysql> DELIMITER $$
mysql> CREATE PROCEDURE insert_user_data(num INTEGER) 
    -> BEGIN
    ->     DECLARE v_i int unsigned DEFAULT 0;
    -> set autocommit= 0;
    -> WHILE v_i < num DO
    ->    insert into user(`name`, age, gender, phone) values (CONCAT('lyn',v_i), mod(v_i,120), 'M', CONCAT('152',ROUND(RAND(1)*100000000)));
    ->  SET v_i = v_i+1;
    -> END WHILE;
    -> commit;
    -> END $$
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;

#插入10w数据
mysql> call insert_user_data(100000);
Query OK, 0 rows affected (6.69 sec)
复制代码
# ls -lh user.ibd
-rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>   #增加了一个非叶子节点,树的高度从1变为2.
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
复制代码

delete数据后的空间变化

mysql> select min(id),max(id),count(*) from user;
+---------+---------+----------+
| min(id) | max(id) | count(*) |
+---------+---------+----------+
|       1 |  100000 |   100000 |
+---------+---------+----------+
1 row in set (0.05 sec)
#删除50000条数据,理论上空间应该从14MB变长7MB左右。
mysql> delete from user limit 50000;
Query OK, 50000 rows affected (0.25 sec)

#数据文件大小依然是14MB,没有缩小。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 14M Nov  6 13:22 /data2/mysql/test/user.ibd

#数据页没有被回收。
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
#在MySQL内部是标记删除,
复制代码
mysql> use information_schema;

Database changed
mysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE,  B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = 'test/user1';
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
| TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
|        1283 |     1207 | test/user | Barracuda   | Dynamic    | Single     |     2236 | PRIMARY    |       3 |          3 |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
1 row in set (0.01 sec)

PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是聚集索引。 INDEX_TYPE取值如下:
0 = nonunique secondary index; 
1 = automatically generated clustered index (GEN_CLUST_INDEX); 
2 = unique nonclustered index; 
3 = clustered index; 
32 = full-text index;
#收缩空间再后进行观察
复制代码

MySQL内部不会真正删除空间,而且做标记删除,即将delflag:N修改为delflag:Y,commit之后会会被purge进入删除链表,如果下一次insert更大的记录,delete之后的空间不会被重用,如果插入的记录小于等于delete的记录空会被重用,这块内容可以通过知数堂的innblock工具进行分析。

Innodb中的碎片

碎片的产生

我们知道数据存储在文件系统上的,总是不能100%利用分配给它的物理空间,删除数据会在页面上留下一些”空洞”,或者随机写入(聚集索引非线性增加)会导致页分裂,页分裂导致页面的利用空间少于50%,另外对表进行增删改会引起对应的二级索引值的随机的增删改,也会导致索引结构中的数据页面上留下一些"空洞",虽然这些空洞有可能会被重复利用,但终究会导致部分物理空间未被使用,也就是碎片。

同时,即便是设置了填充因子为100%,Innodb也会主动留下page页面1/16的空间作为预留使用(An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth)防止update带来的行溢出。

mysql> select table_schema,
    ->        table_name,ENGINE,
    ->        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,
    ->        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio
    -> from information_schema.TABLES where  TABLE_SCHEMA= 'test'
    -> and TABLE_NAME= 'user';
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        4 |      50000 |       4 |        0 |       6 |     149.42 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)

复制代码

其中data_free是分配了未使用的字节数,并不能说明完全是碎片空间。

碎片的回收

对于InnoDB的表,可以通过以下命令来回收碎片,释放空间,这个是随机读IO操作,会比较耗时,也会阻塞表上正常的DML运行,同时需要占用额外更多的磁盘空间,对于RDS来说,可能会导致磁盘空间瞬间爆满,实例瞬间被锁定,应用无法做DML操作,所以禁止在线上环境去执行。

#执行InnoDB的碎片回收
mysql> alter table user engine=InnoDB;
Query OK, 0 rows affected (9.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

##执行完之后,数据文件大小从14MB降低到10M。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd
复制代码
mysql> select table_schema,        table_name,ENGINE,        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where  TABLE_SCHEMA= 'test' and TABLE_NAME= 'user';
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        5 |      50000 |       5 |        0 |       2 |      44.29 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)


复制代码

delete对SQL的影响

未删除前的SQL执行情况

#插入100W数据
mysql> call insert_user_data(1000000);
Query OK, 0 rows affected (35.99 sec)

#添加相关索引
mysql> alter table user add index idx_name(name), add index idx_phone(phone);
Query OK, 0 rows affected (6.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

#表上索引统计信息
mysql> show index from user;
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name  | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user  |          0 | PRIMARY   |            1 | id          | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_name  |            1 | name        | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_phone |            1 | phone       | A         |           2 |     NULL | NULL   |      | BTREE      |         |               |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.00 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.00 sec)

#执行SQL语句
mysql> select id, age ,phone from user where name like 'lyn12%';
+--------+-----+-------------+
| id     | age | phone       |
+--------+-----+-------------+
|    124 |   3 | 15240540354 |
|   1231 |  30 | 15240540354 |
|  12301 |  60 | 15240540354 |
.............................
| 129998 |  37 | 15240540354 |
| 129999 |  38 | 15240540354 |
| 130000 |  39 | 15240540354 |
+--------+-----+-------------+
11111 rows in set (0.03 sec)

mysql> explain select id, age ,phone from user where name like 'lyn12%';
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

#查看相关状态呢变量
mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 11111          |    #请求读的行数
| INNODB_DATA_READS | 7868409        |    #数据物理读的总数
| INNODB_PAGES_READ | 7855239        |    #逻辑读的总数
| LAST_QUERY_COST   | 10.499000      |    #SQL语句的成本COST,主要包括IO_COST和CPU_COST。
+-------------------+----------------+
4 rows in set (0.00 sec)
复制代码

删除后的SQL执行情况

#删除50w数据
mysql> delete from user limit 500000;
Query OK, 500000 rows affected (3.70 sec)

#分析表统计信息
mysql> analyze table user;
+-----------+---------+----------+----------+
| Table     | Op      | Msg_type | Msg_text |
+-----------+---------+----------+----------+
| test.user | analyze | status   | OK       |
+-----------+---------+----------+----------+
1 row in set (0.01 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.01 sec)

mysql> select id, age ,phone from user where name like 'lyn12%';
Empty set (0.05 sec)

mysql> explain select id, age ,phone from user where name like 'lyn12%';
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 0              |
| INNODB_DATA_READS | 7868409        |
| INNODB_PAGES_READ | 7855239        |
| LAST_QUERY_COST   | 10.499000      |
+-------------------+----------------+
4 rows in set (0.00 sec)
复制代码

结果统计分析

操作

COST

物理读次数

逻辑读次数

扫描行数

返回行数

执行时间

初始化插入100W

10.499000

7868409

7855239

22226

11111

30ms

100W随机删除50W

10.499000

7868409

7855239

22226

0

50ms

这也说明对普通的大表,想要通过delete数据来对表进行瘦身是不现实的,所以在任何时候不要用delete去删除数据,应该使用优雅的标记删除。

delete优化建议

控制业务账号权限

对于一个大的系统来说,需要根据业务特点去拆分子系统,每个子系统可以看做是一个service,例如美团App,上面有很多服务,核心的服务有用户服务user-service,搜索服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创建单独账号,同时只授予DML权限且没有delete权限,同时禁止跨库访问。

#创建用户数据库并授权
create database mt_user charset utf8mb4;
grant USAGE, SELECT, INSERT, UPDATE ON mt_user.*  to 'w_user'@'%' identified by 't$W*g@gaHTGi123456';
flush privileges;
复制代码

delete改为标记删除

在MySQL数据库建模规范中有4个公共字段,基本上每个表必须有的,同时在create_time列要创建索引,有两方面的好处:

  1. 一些查询业务场景都会有一个默认的时间段,比如7天或者一个月,都是通过create_time去过滤,走索引扫描更快。
  2. 一些核心的业务表需要以T +1的方式抽取数据仓库中,比如每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',
`is_deleted` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否逻辑删除:0:未删除,1:已删除',
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'

#有了删除标记,业务接口的delete操作就可以转换为update
update user set is_deleted = 1 where user_id = 1213;

#查询的时候需要带上is_deleted过滤
select id, age ,phone from user where is_deleted = 0 and name like 'lyn12%';
复制代码

数据归档方式

通用数据归档方法

#1. 创建归档表,一般在原表名后面添加_bak。
CREATE TABLE `ota_order_bak` (
  `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `order_id` varchar(255) DEFAULT NULL COMMENT '订单id',
  `ota_id` varchar(255) DEFAULT NULL COMMENT 'ota',
  `check_in_date` varchar(255) DEFAULT NULL COMMENT '入住日期',
  `check_out_date` varchar(255) DEFAULT NULL COMMENT '离店日期',
  `hotel_id` varchar(255) DEFAULT NULL COMMENT '酒店ID',
  `guest_name` varchar(255) DEFAULT NULL COMMENT '顾客',
  `purcharse_time` timestamp NULL DEFAULT NULL COMMENT '购买时间',
  `create_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  `create_user` varchar(255) DEFAULT NULL,
  `update_user` varchar(255) DEFAULT NULL,
  `status` int(4) DEFAULT '1' COMMENT '状态 : 1 正常 , 0 删除',
  `hotel_name` varchar(255) DEFAULT NULL,
  `price` decimal(10,0) DEFAULT NULL,
  `remark` longtext,
  PRIMARY KEY (`id`),
  KEY `IDX_order_id` (`order_id`) USING BTREE,
  KEY `hotel_name` (`hotel_name`) USING BTREE,
  KEY `ota_id` (`ota_id`) USING BTREE,
  KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,
  KEY `IDX_create_time` (`create_time`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), 
PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), 
PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), 
PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), 
PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), 
PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), 
PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), 
PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), 
PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), 
PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), 
PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), 
PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), 
PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), 
PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), 
PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), 
PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), 
PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));

#2. 插入原表中无效的数据(需要跟开发同学确认数据保留范围)
create table tbl_p201808 as select * from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59';

#3. 跟归档表分区做分区交换
alter table ota_order_bak exchange partition p201808 with table tbl_p201808; 

#4. 删除原表中已经规范的数据
delete from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59' limit 3000;
复制代码

优化后的归档方式

#1. 创建中间表
CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), 
PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), 
PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), 
PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), 
PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), 
PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), 
PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), 
PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), 
PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), 
PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), 
PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), 
PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), 
PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), 
PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), 
PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), 
PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), 
PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));

#2. 插入原表中有效的数据,如果数据量在100W左右可以在业务低峰期直接插入,如果比较大,建议采用dataX来做,可以控制频率和大小,之前我这边用Go封装了dataX可以实现自动生成json文件,自定义大小去执行。
insert into ota_order_2020 select * from ota_order where create_time between '2020-08-01 00:00:00' and '2020-08-31 23:59:59';

#3. 表重命名
alter table ota_order rename to ota_order_bak;  
alter table ota_order_2020 rename to ota_order;
#4. 插入差异数据
insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);
#5. ota_order_bak改造成分区表,如果表比较大不建议直接改造,可以先创建好分区表,通过dataX把导入进去即可。

#6. 后续的归档方法
#创建中间普遍表
create table ota_order_mid like ota_order;
#交换原表无效数据分区到普通表
alter table ota_order exchange partition p201808 with table ota_order_mid; 
##交换普通表数据到归档表的相应分区
alter table ota_order_bak exchange partition p201808 with table ota_order_mid; 
复制代码

这样原表和归档表都是按月的分区表,只需要创建一个中间普通表,在业务低峰期做两次分区交换,既可以删除无效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行计划。

总结

通过从InnoDB存储空间分布,delete对性能的影响可以看到,delete物理删除既不能释放磁盘空间,而且会产生大量的碎片,导致索引频繁分裂,影响SQL执行计划的稳定性;

同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上正常的DML操作。

在业务代码层面,应该做逻辑标记删除,避免物理删除;为了实现数据归档需求,可以用采用MySQL分区表特性来实现,都是DDL操作,没有碎片产生。

另外一个比较好的方案采用Clickhouse,对有生命周期的数据表可以使用Clickhouse存储,利用其TTL特性实现无效数据自动清理。



Tags:MySQL   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
MySQL 核心模块揭秘
server 层会创建一个 SAVEPOINT 对象,用于存放 savepoint 信息。binlog 会把 binlog offset 写入 server 层为它分配的一块 8 字节的内存里。 InnoDB 会维护自己的 savepoint...【详细内容】
2024-04-03  Search: MySQL  点击:(7)  评论:(0)  加入收藏
MySQL 核心模块揭秘,你看明白了吗?
为了提升分配 undo 段的效率,事务提交过程中,InnoDB 会缓存一些 undo 段。只要同时满足两个条件,insert undo 段或 update undo 段就能被缓存。1. 关于缓存 undo 段为了提升分...【详细内容】
2024-03-27  Search: MySQL  点击:(15)  评论:(0)  加入收藏
MySQL:BUG导致DDL语句无谓的索引重建
对于5.7.23之前的版本在评估类似DDL操作的时候需要谨慎,可能评估为瞬间操作,但是实际上线的时候跑了很久,这个就容易导致超过维护窗口,甚至更大的故障。一、问题模拟使用5.7.22...【详细内容】
2024-03-26  Search: MySQL  点击:(13)  评论:(0)  加入收藏
从 MySQL 到 ByteHouse,抖音精准推荐存储架构重构解读
ByteHouse是一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,可以通过增加服务器数量来提升处理能力。本文将从兴趣圈层...【详细内容】
2024-03-22  Search: MySQL  点击:(28)  评论:(0)  加入收藏
MySQL自增主键一定是连续的吗?
测试环境:MySQL版本:8.0数据库表:T (主键id,唯一索引c,普通字段d)如果你的业务设计依赖于自增主键的连续性,这个设计假设自增主键是连续的。但实际上,这样的假设是错的,因为自增主键不...【详细内容】
2024-03-10  Search: MySQL  点击:(13)  评论:(0)  加入收藏
准线上事故之MySQL优化器索引选错
1 背景最近组里来了许多新的小伙伴,大家在一起聊聊技术,有小兄弟提到了MySQL的优化器的内部策略,想起了之前在公司出现的一个线上问题,今天借着这个机会,在这里分享下过程和结论...【详细内容】
2024-03-07  Search: MySQL  点击:(31)  评论:(0)  加入收藏
MySQL数据恢复,你会吗?
今天分享一下binlog2sql,它是一款比较常用的数据恢复工具,可以通过它从MySQL binlog解析出你要的SQL,并根据不同选项,可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。主要...【详细内容】
2024-02-22  Search: MySQL  点击:(53)  评论:(0)  加入收藏
如何在MySQL中实现数据的版本管理和回滚操作?
实现数据的版本管理和回滚操作在MySQL中可以通过以下几种方式实现,包括使用事务、备份恢复、日志和版本控制工具等。下面将详细介绍这些方法。1.使用事务:MySQL支持事务操作,可...【详细内容】
2024-02-20  Search: MySQL  点击:(54)  评论:(0)  加入收藏
为什么高性能场景选用Postgres SQL 而不是 MySQL
一、 数据库简介 TLDR;1.1 MySQL MySQL声称自己是最流行的开源数据库,它属于最流行的RDBMS (Relational Database Management System,关系数据库管理系统)应用软件之一。LAMP...【详细内容】
2024-02-19  Search: MySQL  点击:(39)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  Search: MySQL  点击:(55)  评论:(0)  加入收藏
▌简易百科推荐
MySQL 核心模块揭秘
server 层会创建一个 SAVEPOINT 对象,用于存放 savepoint 信息。binlog 会把 binlog offset 写入 server 层为它分配的一块 8 字节的内存里。 InnoDB 会维护自己的 savepoint...【详细内容】
2024-04-03  爱可生开源社区    Tags:MySQL   点击:(7)  评论:(0)  加入收藏
MySQL 核心模块揭秘,你看明白了吗?
为了提升分配 undo 段的效率,事务提交过程中,InnoDB 会缓存一些 undo 段。只要同时满足两个条件,insert undo 段或 update undo 段就能被缓存。1. 关于缓存 undo 段为了提升分...【详细内容】
2024-03-27  爱可生开源社区  微信公众号  Tags:MySQL   点击:(15)  评论:(0)  加入收藏
MySQL:BUG导致DDL语句无谓的索引重建
对于5.7.23之前的版本在评估类似DDL操作的时候需要谨慎,可能评估为瞬间操作,但是实际上线的时候跑了很久,这个就容易导致超过维护窗口,甚至更大的故障。一、问题模拟使用5.7.22...【详细内容】
2024-03-26  MySQL学习  微信公众号  Tags:MySQL   点击:(13)  评论:(0)  加入收藏
从 MySQL 到 ByteHouse,抖音精准推荐存储架构重构解读
ByteHouse是一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,可以通过增加服务器数量来提升处理能力。本文将从兴趣圈层...【详细内容】
2024-03-22  字节跳动技术团队    Tags:ByteHouse   点击:(28)  评论:(0)  加入收藏
MySQL自增主键一定是连续的吗?
测试环境:MySQL版本:8.0数据库表:T (主键id,唯一索引c,普通字段d)如果你的业务设计依赖于自增主键的连续性,这个设计假设自增主键是连续的。但实际上,这样的假设是错的,因为自增主键不...【详细内容】
2024-03-10    dbaplus社群  Tags:MySQL   点击:(13)  评论:(0)  加入收藏
准线上事故之MySQL优化器索引选错
1 背景最近组里来了许多新的小伙伴,大家在一起聊聊技术,有小兄弟提到了MySQL的优化器的内部策略,想起了之前在公司出现的一个线上问题,今天借着这个机会,在这里分享下过程和结论...【详细内容】
2024-03-07  转转技术  微信公众号  Tags:MySQL   点击:(31)  评论:(0)  加入收藏
MySQL数据恢复,你会吗?
今天分享一下binlog2sql,它是一款比较常用的数据恢复工具,可以通过它从MySQL binlog解析出你要的SQL,并根据不同选项,可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。主要...【详细内容】
2024-02-22  数据库干货铺  微信公众号  Tags:MySQL   点击:(53)  评论:(0)  加入收藏
如何在MySQL中实现数据的版本管理和回滚操作?
实现数据的版本管理和回滚操作在MySQL中可以通过以下几种方式实现,包括使用事务、备份恢复、日志和版本控制工具等。下面将详细介绍这些方法。1.使用事务:MySQL支持事务操作,可...【详细内容】
2024-02-20  编程技术汇    Tags:MySQL   点击:(54)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  数据库干货铺  微信公众号  Tags:MySQL   点击:(55)  评论:(0)  加入收藏
mysql索引失效的场景
MySQL中索引失效是指数据库查询时无法有效利用索引,这可能导致查询性能显著下降。以下是一些常见的MySQL索引失效的场景:1.使用非前导列进行查询: 假设有一个复合索引 (A, B)。...【详细内容】
2024-01-15  小王爱编程  今日头条  Tags:mysql索引   点击:(87)  评论:(0)  加入收藏
站内最新
站内热门
站内头条