您当前的位置:首页 > 电脑百科 > 数据库 > Redis

Redis布隆过滤器

时间:2019-10-08 11:14:13  来源:  作者:

场景

在项目开发中,我们经常会遇到去重问题。比如:判断一个人有没有浏览过一篇文章,判断一个人当天是否登录过某个系统,判断一个ip是否发过一个请求,等等。

比较容易想到的是使用set来实现这个功能。但如果数据量较大,使用set会非常消耗内存,性能也不高。在前面的文章中,我们介绍了一种数据结构:BitMap来提高性能。但BitMap仍然比较消耗内存,尤其是在数据比较稀疏的情况下,使用BitMap并不划算。

实际上,对于“去重”问题,业界有另外一个更优秀的数据结构来解决这类问题,那就是——布隆过滤器(BloomFilter)

原理

布隆过滤器与BitMap类似,底层也是一个位数组。1表示有,0表示无。但布隆过滤器比BitMap需要更少的内存,它是怎么办到的呢?答案是多个hash。

我们知道hash算法,是把一个数从较大范围的值,映射到较小范围值。比如我们有一个10位的数组,使用某个hash算法及其数组上的表示:

hash(“xy”) = 3;

hash(“技术圈”) = 5;

0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0

这样,我们使用这个hash算法就能快速的判断一个字符串是不是存在一个集合里面了。但众所周知,hash算法是有可能发生hash冲突的。比如可能有两个不同的字符串映射到同一个数:

hash(“xy”) = 3;

hash(“xy的技术圈”) = 3;

这种情况下,就不能准确得判断出某个字符串是不是存在于集合之中呢。

那怎么解决这个问题呢?答案是使用多个不同的hash算法。比如:

h1(“xy”) = 3, h2(“xy”) = 5, h3(“xy”) = 7;

h1(“技术圈”) = 5, h2(“技术圈”) = 6, h3(“技术圈”) = 7;

h1(“xy的技术圈”) = 3, h2(“xy的技术圈”) = 6, h3(“xy的技术圈”) = 9;

最开始,集合里没有元素,所有位都是0:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0

然后,插入“xy”,利用多次hash,把每次hash的结果下标3, 5, 7都插入到相应的地方:

0, 0, 0, 1, 0, 1, 0, 1, 0, 0

然后,插入“技术圈”,利用多次hash,把每次hash的结果下标5, 6, 7都插入到相应的地方,已经是1的下标不变:

0, 0, 0, 1, 0, 1, 1, 1, 0, 0

这个时候,如果想要判断“xy”是否在集合中,只需要使用同样的3个hash算法,来计算出下标是3, 5, 7,发现这3个下标都为1,那么就认为“xy”这个字符串在集合中。而“xy的技术圈”计算出来的下标是3, 6, 9。发现这三个下标有不是1的地方,比如下标为9的地方是0,那就说明“xy的技术圈”这个字符串还不在集合中。

误差

从原理可以看得出来,布隆过滤器是有可能存在一定的误差的。尤其是当hash函数比较少的时候。布隆过滤器是根据多次hash计算下标后,数组的这些下标是否都为1来判断这个元素是否存在的。所以是存在一定的几率,要检查的元素实际上没有插入,但被其它元素插入影响,导致所有下标都为1。

所以布隆过滤器不能删除,因为一旦删除(即将相应的位置为0),就很大可能会影响其他元素。

如果使用布隆过滤器判断一个函数是否存在于一个集合,如果它返回true,则代表可能存在。如果它返回false,则代表一定不存在

由此可见,布隆过滤器适合于一些需要去重,但不一定要完全精确的场景。比如:

  • 判断一个用户访问了一篇文章
  • 判断一个ip访问了本网站
  • 判断一个key是否被访问过

相应的,布隆过滤器不适合一些要求零误差的场景,比如:

  • 判断一个用户是否收藏了一篇文章
  • 判断一个用户是否订购了一个课程

使用技巧

这就是布隆过滤器的基本原理。由上面的例子可以看出来,如果空间越大,hash函数越多,结果就越精确,但空间效率和查询效率就会越低。

这里有一个测试数据:

Redis布隆过滤器

 

后面4列中的数据就是发生误差的数量。可见,空间大小和集合大小不变的情况下,增加hash函数可以显著减小误差。但一旦集合大小达到空间大小的25%左右后,增加hash函数带来的提神效果并不明显。这个时候应该增加空间大小

redis中的布隆过滤器

Redis的布隆过滤器不是原生自带的,而是要通过module加载进去。Redis在4.0的版本中加入了module功能。具体使用可以直接看RedisBloom github的README:github.com/RedisBloom/…

Redis的布隆过滤器主要有两个命令:

  • bf.add 添加元素到布隆过滤器中:bf.add strs xy
  • bf.exists 判断某个元素是否在过滤器中:bf.exists strs xy

Redis中有一个命令可以来设置布隆过滤器的准确率:

bf.reserve strs 0.01 100
复制代码

三个参数的含义:

  • 第一个值是过滤器的名字。
  • 第二个值为error_rate的值:允许布隆过滤器的错误率。
  • 第三个值为initial_size的值:初始化位数组的大小。

扩展学习

JAVA实现的布隆过滤器

如果你的项目没有使用Redis,那可以使用一些开源库,基于代码实现,直接存放在内存。比如googleguava包中提供了BloomFilter类,有兴趣的读者可以去了解一下,研究研究源码和使用。

布谷鸟过滤器

RedisBloom模块还实现了布谷鸟过滤器,它算是对布隆过滤器的增强版。解决了布隆过滤器的一些比较明显的缺点,比如:不能删除元素,不能计数等。除此之外,布谷鸟过滤器不用使用多个hash函数,所以查询性能更高。除此之外,在相同的误判率下,布谷鸟过滤器的空间利用率要明显高于布隆,空间上大概能节省40%多。

笔者个人觉得,对于大多数场景来说,布隆过滤器足以解决我们的问题。掘金上有一篇深度分析布谷鸟过滤器的文章,有兴趣的读者可以去了解一下:juejin.im/post/5cfb9c…

认真写文章,用心做分享。

个人网站:yasinshaw.com

公众号:xy的技术圈



Tags:Redis 布隆过滤器   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
在项目开发中,我们经常会遇到去重问题。比如:判断一个人有没有浏览过一篇文章,判断一个人当天是否登录过某个系统,判断一个ip是否发过一个请求,等等。...【详细内容】
2019-10-08  Tags: Redis 布隆过滤器  点击:(152)  评论:(0)  加入收藏
▌简易百科推荐
来源: my.oschina.net/xiaomu0082/blog/2990388首先说下问题现象:内网sandbox环境API持续1周出现应用卡死,所有api无响应现象刚开始当测试抱怨环境响应慢的时候 ,我们重启一下应...【详细内容】
2021-12-08  Java识堂    Tags:Redis   点击:(18)  评论:(0)  加入收藏
我不知道为什么你会选择对特定数量的“错误”(或警告)如此具体。听起来您正在寻找将要发布到 Yahoo! 的某些文章的内容。 Insider (N Foos to Blah for the BlahBlah)。那说:...【详细内容】
2021-12-07  富集云科技有限公司    Tags:Redis   点击:(14)  评论:(0)  加入收藏
目录 一、背景 二、步骤 0.理论支持 1、获取数据 2、结果 3、分析数据并评估大小 三、关于repl-backlog-size 一、背景 repl-backlog-size控制这个环形缓冲区. ​ 主从断...【详细内容】
2021-11-05  弈秋的美好生活    Tags:redis   点击:(41)  评论:(0)  加入收藏
Redis 性能测试是通过同时执行多个命令实现的。1,Redis-benchmarkRedis性能命令:redis性能命令格式: redis-benchmark [option] [option value] redis 性能测试工具可选参数如...【详细内容】
2021-11-02  川石信息    Tags:Redis   点击:(41)  评论:(0)  加入收藏
1 概述数据结构和内部编码 无传统关系型数据库的 Table 模型schema 所对应的db仅以编号区分。同一 db 内,key 作为顶层模型,它的值是扁平化的。即 db 就是key的命名空间。 key...【详细内容】
2021-11-01  JavaEdge    Tags:Redis   点击:(28)  评论:(0)  加入收藏
普通java中使用引用Java redis 驱动,即可连接:import redis.clients.jedis.Jedis; public class RedisTestJava { public static void main(String[] args) { //连...【详细内容】
2021-10-13  faesuite    Tags:Redis   点击:(34)  评论:(0)  加入收藏
Redis常用的数据结构有 string list set zset hashstringstring 是 Redis 的基本的数据类型,一个 key 对应一个 value。string 类型是二进制安全的,Redis的string可以包含任...【详细内容】
2021-10-12  语霖    Tags:Redis   点击:(36)  评论:(0)  加入收藏
列表类型可以存储一组按插入顺序排序的字符串,它非常灵活,支持在两端插入、弹出数据,可以充当栈和队列的角色。> LPUSH fruit apple(integer) 1> RPUSH fruit banana(integer)...【详细内容】
2021-09-17  深夜敲代码    Tags:Redis   点击:(54)  评论:(0)  加入收藏
Redis持久化意义 是做灾难恢复,数据恢复,也可以归类到高可用的一个环节里面去,比如你的redis整个挂了,然后redis就不可用了,你要做的事情是让redis变得可用,尽快变得可用 大量的请...【详细内容】
2021-08-12  小李说IT    Tags:Redis   点击:(77)  评论:(0)  加入收藏
当查询Redis中没有的数据时,该查询会下沉到数据库层,同时数据库层也没有该数据,当这种情况大量出现或被恶意攻击时,接口的访问全部透过Redis访问数据库,而数据库中也没有这些数据...【详细内容】
2021-07-30  随便t    Tags:缓存穿透   点击:(91)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条