您当前的位置:首页 > 电脑百科 > 人工智能

计算机视觉领域,5个步骤实现目标检测

时间:2020-08-05 10:47:59  来源:  作者:

目标检测技术是当今计算机视觉领域的发展趋势。在场景图像和视频中,有许多方法被用来检测物体。在资源和执行时间方面,每种技术都有自己的优势和局限性。检测视频中的物体也需要大量的技术知识和资源。

5个步骤实现目标检测

 

因此,人们一直在寻找一种简单、快速的目标检测方法。在本文中,我们将演示如何检测视频中看到的对象,只需5个步骤。

我们将在本任务中使用pixellib库,该库使用实例分割检测对象。我们还将使用预训练Mask R-CNN模型来识别视频中看到的物体。

在这个实现中,我们将检测交通视频中的车辆对象。

实例分割

实例分割是计算机视觉中的一种技术,它利用图像分割的方法进行目标检测。它在像素级识别图像或视频中存在的每个对象实例。

在图像分割中,视觉输入被分割成若干段,通过形成像素集合来表示对象或对象的一部分。实例分割识别图像中每个对象的每个实例,而不是像语义分割那样对每个像素进行分类。

Mask R-CNN

Mask R-CNN是由Kaiming He等人在Facebook人工智能研究所提出的深层神经网络的变体。该模型用于解决计算机视觉中的对象实例分割问题。

它检测图像中的对象,同时为每个实例生成一个高质量的分割掩码。它是Faster R-CNN的一个扩展,它增加了一个预测目标掩码的分支,与现有的边界盒识别分支并行。

下面给出了用于实例分割的Mask R-CNN框架

5个步骤实现目标检测

 

实现

现在,我们将讨论在视频中检测物体的步骤。

1.安装库和依赖项

在第一步中,我们需要安装pixellib库及其依赖项。

!pip install pixellib
5个步骤实现目标检测

 

2.加载预先训练的Mask RCNN权重

由于我们将使用Mask R-CNN模型来检测目标,我们将下载其预训练的权重。

!wget --quiet https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5

3.导入库

现在,我们将导入已安装的pixellib库。我们还将导入instance_segmentation 类,因为我们将使用实例分割方法检测对象。

import pixellib
from pixellib.instance import instance_segmentation

4.实例化实例分割模型并加载MASK R-CNN权重

在这一步中,我们将实例化pixellib提供的instance_segmentation类,并使用其预训练的权重加载Mask R-CNN模型。

segment_video = instance_segmentation()
segment_video.load_model("mask_rcnn_coco.h5")

5.检测物体

在这一步中,我们将通过在视频中MASK R-CNN来处理目标检测任务。我们会用随机使用一段交通视频

视频:https://analyticsindiamag.com/wp-content/uploads/2020/07/traffic_vid2.mp4?_=1

在这种方法中,我们设置每秒帧数,即视频输出每秒的帧数。

segment_video.process_video("traffic_vid2.mp4", show_bboxes = True, frames_per_second= 15, output_video_name="object_detect.mp4")
5个步骤实现目标检测

 


5个步骤实现目标检测

 


5个步骤实现目标检测

 


5个步骤实现目标检测

 

最后,我们将在工作目录中获得输出视频。这个过程的时间取决于视频的长度和大小。你应该使用GPU来加快处理速度。对于上面的交通视频,结果为

视频:https://analyticsindiamag.com/wp-content/uploads/2020/07/Object_Detect.mp4?_=2

你可以定义一个函数来从YouTube获取视频并将其直接传递给上面的函数。

因此,利用以上步骤,我们可以讨论一种非常简单的方法来实现视频中的目标检测任务。刚入门计算机视觉的可以用这种方法检测物体。



Tags:目标检测   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
允中 发自 凹非寺 量子位 编辑 | 公众号 QbitAI工业视觉、自动驾驶、安防、新零售等我们身边熟知的各行各业都需要目标检测技术,由于其很好的平衡了标注成本、检测精度和速度...【详细内容】
2020-08-13  Tags: 目标检测  点击:(88)  评论:(0)  加入收藏
目标检测技术是当今计算机视觉领域的发展趋势。在场景图像和视频中,有许多方法被用来检测物体。在资源和执行时间方面,每种技术都有自己的优势和局限性。检测视频中的物体也需...【详细内容】
2020-08-05  Tags: 目标检测  点击:(114)  评论:(0)  加入收藏
▌简易百科推荐
作为数据科学家或机器学习从业者,将可解释性集成到机器学习模型中可以帮助决策者和其他利益相关者有更多的可见性并可以让他们理解模型输出决策的解释。在本文中,我将介绍两个...【详细内容】
2021-12-17  deephub    Tags:AI   点击:(15)  评论:(0)  加入收藏
基于算法的业务或者说AI的应用在这几年发展得很快。但是,在实际应用的场景中,我们经常会遇到一些非常奇怪的偏差现象。例如,Facebook将黑人标记为灵长类动物、城市图像识别系统...【详细内容】
2021-11-08  数据学习DataLearner    Tags:机器学习   点击:(32)  评论:(0)  加入收藏
11月2日召开的世界顶尖科学家数字未来论坛上,2013年诺贝尔化学奖得主迈克尔·莱维特、2014年诺贝尔生理学或医学奖得主爱德华·莫索尔、2007年图灵奖得主约瑟夫·斯发斯基、1986年图灵奖得主约翰·霍普克罗夫特、2002...【详细内容】
2021-11-03  张淑贤  证券时报  Tags:人工智能   点击:(39)  评论:(0)  加入收藏
鉴于物联网设备广泛部署、5G快速无线技术闪亮登场,把计算、存储和分析放在靠近数据生成的地方来处理,让边缘计算有了用武之地。 边缘计算正在改变全球数百万个设备处理和传输...【详细内容】
2021-10-26    计算机世界  Tags:边缘计算   点击:(45)  评论:(0)  加入收藏
这是几位机器学习权威专家汇总的725个机器学习术语表,非常全面了,值得收藏! 英文术语 中文翻译 0-1 Loss Function 0-1损失函数 Accept-Reject Samplin...【详细内容】
2021-10-21  Python部落    Tags:机器学习   点击:(43)  评论:(0)  加入收藏
要开始为开源项目做贡献,有一些先决条件:1. 学习一门编程语言:由于在开源贡献中你需要编写代码才能参与开发,你需要学习任意一门编程语言。根据项目的需要,在后期学习另一种语言...【详细内容】
2021-10-20  TSINGSEE青犀视频    Tags:机器学习   点击:(37)  评论:(0)  加入收藏
SimpleAI.人工智能、机器学习、深度学习还是遥不可及?来这里看看吧~ 从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现...【详细内容】
2021-10-19  憨昊昊    Tags:神经网络   点击:(47)  评论:(0)  加入收藏
语言是人类思维的基础,当计算机具备了处理自然语言的能力,才具有真正智能的想象。自然语言处理(Natural Language Processing, NLP)作为人工智能(Artificial Intelligence, AI)的核心技术之一,是用计算机来处理、理解以及运...【详细内容】
2021-10-11    36氪  Tags:NLP   点击:(48)  评论:(0)  加入收藏
边缘计算是什么?近年来,物联网设备数量呈线性增长趋势。根据艾瑞测算, 2020年,中国物联网设备的数量达74亿,预计2025年突破150亿个。同时,设备本身也变得越来越智能化,AI与互联网在...【详细内容】
2021-09-22  汉智兴科技    Tags:   点击:(54)  评论:(0)  加入收藏
说起人工智能,大家总把它和科幻电影中的机器人联系起来,而实际上这些科幻场景与现如今的人工智能没什么太大关系。人工智能确实跟人类大脑很相似,但它们的显著差异在于人工智能...【详细内容】
2021-09-17  异步社区    Tags:人工智能   点击:(57)  评论:(0)  加入收藏
相关文章
    无相关信息
最新更新
栏目热门
栏目头条