您当前的位置:首页 > 电脑百科 > 人工智能

理解卷积神经网络中的自注意力机制

时间:2020-09-17 09:49:12  来源:  作者:

作者:Shuchen Du

编译:ronghuaiyang

导读

计算机视觉中的编解码结构的局限性以及提升方法。

理解卷积神经网络中的自注意力机制

 

卷积神经网络(CNN)广泛应用于深度学习和计算机视觉算法中。虽然很多基于CNN的算法符合行业标准,可以嵌入到商业产品中,但是标准的CNN算法仍然有局限性,在很多方面还可以改进。这篇文章讨论了语义分割和编码器-解码器架构作为例子,阐明了其局限性,以及为什么自注意机制可以帮助缓解问题。

标准编解码结构的局限性

理解卷积神经网络中的自注意力机制

图1:标准编解码结构

解码器架构(图1)是许多计算机视觉任务中的标准方法,特别是像素级预测任务,如语义分割、深度预测和一些与GAN相关的图像生成器。在编码器-解码器网络中,输入图像进行卷积、激活以及池化得到一个潜向量,然后恢复到与输入图像大小相同的输出图像。该架构是对称的,由精心设计的卷积块组成。由于其简单和准确,该体系结构被广泛使用。

理解卷积神经网络中的自注意力机制

图2:卷积的计算

但是,如果我们深入研究卷积的计算(图2),编码器-解码器架构的局限性就会浮出表面。例如,在3x3卷积中,卷积滤波器有9个像素,目标像素的值仅参照自身和周围的8个像素计算。这意味着卷积只能利用局部信息来计算目标像素,这可能会带来一些偏差,因为看不到全局信息。也有一些朴素的方法来缓解这个问题:使用更大的卷积滤波器或有更多卷积层的更深的网络。然而,计算开销越来越大,结果并没有得到显著的改善。

理解方差和协方差

方差和协方差都是统计学和机器学习中的重要概念。它们是为随机变量定义的。顾名思义,方差描述的是单个随机变量与其均值之间的偏差,而协方差描述的是两个随机变量之间的相似性。如果两个随机变量的分布相似,它们的协方差很大。否则,它们的协方差很小。如果我们将feature map中的每个像素作为一个随机变量,计算所有像素之间的配对协方差,我们可以根据每个预测像素在图像中与其他像素之间的相似性来增强或减弱每个预测像素的值。在训练和预测时使用相似的像素,忽略不相似的像素。这种机制叫做自注意力。

理解卷积神经网络中的自注意力机制

方程 1: 两个随机变量X和Y的协方差

CNN中的自注意力机制

理解卷积神经网络中的自注意力机制

图3: CNN中的自注意力机制

为了实现对每个像素级预测的全局参考,Wang等人在CNN中提出了自我注意机制(图3)。他们的方法是基于预测像素与其他像素之间的协方差,将每个像素视为随机变量。参与的目标像素只是所有像素值的加权和,其中的权值是每个像素与目标像素的相关。

理解卷积神经网络中的自注意力机制

图4: 自注意机制的简明版本

如果我们将原来的图3简化为图4,我们就可以很容易地理解协方差在机制中的作用。首先输入高度为H、宽度为w的特征图X,然后将X reshape为三个一维向量A、B和C,将A和B相乘得到大小为HWxHW的协方差矩阵。最后,我们用协方差矩阵和C相乘,得到D并对它reshape,得到输出特性图Y,并从输入X进行残差连接。这里D中的每一项都是输入X的加权和,权重是像素和彼此之间的协方差。

利用自注意力机制,可以在模型训练和预测过程中实现全局参考。该模型具有良好的bias-variance权衡,因而更加合理。

深度学习的一个可解释性方法

理解卷积神经网络中的自注意力机制

图5: SAGAN中的可解释性图像生成

SAGAN将自注意力机制嵌入GAN框架中。它可以通过全局参考而不是局部区域来生成图像。在图5中,每一行的左侧图像用颜色表示采样的查询点,其余五幅图像为每个查询点对应的关注区域。我们可以看到,对于天空和芦苇灌木这样的背景查询点,关注区域范围广泛,而对于熊眼和鸟腿这样的前景点,关注区域局部集中。

参考

Non-local Neural Networks, Wang et al., CVPR 2018

Self-Attention Generative Adversarial Networks, Zhang et al. ICML 2019

Dual Attention Network for Scene Segmentation, Fu et al., CVPR 2019

Wikipedia, https://en.wikipedia.org/wiki/Covariance_matrix

Zhihu, https://zhuanlan.zhihu.com/p/37609917

 

英文原文:https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251



Tags:卷积神经网络   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
卷积神经网络(CNN)广泛应用于深度学习和计算机视觉算法中。虽然很多基于CNN的算法符合行业标准,可以嵌入到商业产品中,但是标准的CNN算法仍然有局限性,在很多方面还可以改进。这篇文章讨论了语义分割和编码器-解码器架构...【详细内容】
2020-09-17  Tags: 卷积神经网络  点击:(93)  评论:(0)  加入收藏
在处理图像和图像数据时,CNN是最常用的架构。卷积神经网络已经被证明在深度学习和计算机视觉领域提供了许多最先进的解决方案。没有CNN,图像识别、目标检测、自动驾驶汽车...【详细内容】
2020-08-04  Tags: 卷积神经网络  点击:(95)  评论:(0)  加入收藏
如何构建具有自定义结构和层次的神经网络:Keras中的图卷积神经网络(GCNN)。在生活中的某个时刻我们会发现,在Tensorflow Keras中预先定义的层已经不够了!我们想要更多的层!...【详细内容】
2020-07-26  Tags: 卷积神经网络  点击:(68)  评论:(0)  加入收藏
▌简易百科推荐
作为数据科学家或机器学习从业者,将可解释性集成到机器学习模型中可以帮助决策者和其他利益相关者有更多的可见性并可以让他们理解模型输出决策的解释。在本文中,我将介绍两个...【详细内容】
2021-12-17  deephub    Tags:AI   点击:(15)  评论:(0)  加入收藏
基于算法的业务或者说AI的应用在这几年发展得很快。但是,在实际应用的场景中,我们经常会遇到一些非常奇怪的偏差现象。例如,Facebook将黑人标记为灵长类动物、城市图像识别系统...【详细内容】
2021-11-08  数据学习DataLearner    Tags:机器学习   点击:(32)  评论:(0)  加入收藏
11月2日召开的世界顶尖科学家数字未来论坛上,2013年诺贝尔化学奖得主迈克尔·莱维特、2014年诺贝尔生理学或医学奖得主爱德华·莫索尔、2007年图灵奖得主约瑟夫·斯发斯基、1986年图灵奖得主约翰·霍普克罗夫特、2002...【详细内容】
2021-11-03  张淑贤  证券时报  Tags:人工智能   点击:(39)  评论:(0)  加入收藏
鉴于物联网设备广泛部署、5G快速无线技术闪亮登场,把计算、存储和分析放在靠近数据生成的地方来处理,让边缘计算有了用武之地。 边缘计算正在改变全球数百万个设备处理和传输...【详细内容】
2021-10-26    计算机世界  Tags:边缘计算   点击:(45)  评论:(0)  加入收藏
这是几位机器学习权威专家汇总的725个机器学习术语表,非常全面了,值得收藏! 英文术语 中文翻译 0-1 Loss Function 0-1损失函数 Accept-Reject Samplin...【详细内容】
2021-10-21  Python部落    Tags:机器学习   点击:(43)  评论:(0)  加入收藏
要开始为开源项目做贡献,有一些先决条件:1. 学习一门编程语言:由于在开源贡献中你需要编写代码才能参与开发,你需要学习任意一门编程语言。根据项目的需要,在后期学习另一种语言...【详细内容】
2021-10-20  TSINGSEE青犀视频    Tags:机器学习   点击:(37)  评论:(0)  加入收藏
SimpleAI.人工智能、机器学习、深度学习还是遥不可及?来这里看看吧~ 从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现...【详细内容】
2021-10-19  憨昊昊    Tags:神经网络   点击:(47)  评论:(0)  加入收藏
语言是人类思维的基础,当计算机具备了处理自然语言的能力,才具有真正智能的想象。自然语言处理(Natural Language Processing, NLP)作为人工智能(Artificial Intelligence, AI)的核心技术之一,是用计算机来处理、理解以及运...【详细内容】
2021-10-11    36氪  Tags:NLP   点击:(48)  评论:(0)  加入收藏
边缘计算是什么?近年来,物联网设备数量呈线性增长趋势。根据艾瑞测算, 2020年,中国物联网设备的数量达74亿,预计2025年突破150亿个。同时,设备本身也变得越来越智能化,AI与互联网在...【详细内容】
2021-09-22  汉智兴科技    Tags:   点击:(54)  评论:(0)  加入收藏
说起人工智能,大家总把它和科幻电影中的机器人联系起来,而实际上这些科幻场景与现如今的人工智能没什么太大关系。人工智能确实跟人类大脑很相似,但它们的显著差异在于人工智能...【详细内容】
2021-09-17  异步社区    Tags:人工智能   点击:(57)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条