您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

快速提升Python数据分析能力的七个神奇方法

时间:2020-07-26 13:19:49  来源:  作者:

前言

使用Python进行数据分析是一件专业领域的事情,所以要想强化数据分析的技能,需要大家不断练习。同时,我们也需要向有经验的数据分析师学习他们的专业技巧。这篇文章我们介绍来自数据分析大师分享的七个可以提升分析能力的方法。

快速提升Python数据分析能力的七个神奇方法

 

1.Pandas 分析包

这个工具的好处是显而易见的。下面的动画是调用简单方法df.profile_report()的结果,看看自己的结果报告:

快速提升Python数据分析能力的七个神奇方法

 

使用这个工具很简单,只需安装和导入pandas分析包。

2.使用Cufflinks和Plotly绘图

我们中的大多数人都是所谓的“有经验的”数据科学家或数据分析师,他们会非常熟悉matplotlib和pandas之间的集成。也就是你可以快速画出一个简单pd的图。DataFrame或pd。通过简单调用.plot()方法,可以得到以下结果:

快速提升Python数据分析能力的七个神奇方法

 

现在这一切都很好,但如何实现交互,可平移,可缩放,可缩放的图形呢?我们可以用Cufflinks

要在您的环境中安装Cufflinks,只需运行

你就可以开始了。看看下面这些:

快速提升Python数据分析能力的七个神奇方法

 

3.IPython Magic命令

IPython的“Magic”基本上是IPython在标准Python语法之上的一系列增强。Magic命令有两种类型:行Magic,用一个%前缀表示,对一行输入进行操作;单元Magic,用两个%%前缀表示,对多行输入进行操作。下面是“magic”提供的一些有用的功能:

  1. %lsmagic:找到全部
  2. %debug:交互式调试
  3. %store:在notebook之间传递变量。
  4. %who:列出全局作用域的所有变量。
  5. %%time: 时间魔法,获取所有时间信息
  6. %%writefile:将单元格内容写入文件。

4.奇特的Jupyter格式

这个超级酷!基本上,Jupyter允许一些html / css格式的标记单元格。

蓝色风格

<div class="alert alert-block alert-info">    This is <b>fancy</b>!</div>

红色风格

<div class="alert alert-block alert-danger">    This is <b>baaaaad</b>!</div>

绿色风格

<div class="alert alert-block alert-success">    This is <b>gooood</b>!</div>

可以看一看效果如何:

快速提升Python数据分析能力的七个神奇方法

 

5.Jupyter快捷键

在访问和学习快捷键时,您可以使用命令面板:Ctrl + Shift + P。这会显示出笔记本所有功能的列表。以下是最基本的命令举例:

  • Esc:这将带你进入命令模式。在这个模式下,你可以使用箭头键在笔记本上导航。
  • Enter:返回当前单元格的编辑模式。

更多命令可以一边学习一遍使用。

6.Jupyter中每个单元的多个输出

这个很棒。您是否曾经想要显示pandas DataFrame的.head()和.tail(),但中途放弃了,因为创建额外的代码单元来运行.tail()方法太麻烦了?不用担心了,现在您可以使用以下代码行显示您想要的所有输出:

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

现在你看,多重输出的力量:

快速提升Python数据分析能力的七个神奇方法

 

7.立即创建一个幻灯片的Notebook

使用RISE,你可以立即把你的Jupyter Notebook变成幻灯片与一个单一的按键。最好的是,Notebook仍然是活动的,所以您可以执行现场编码的同时呈现!

要使用这个出色的工具,简单安装RISE或通过conda或pip取决于您的环境:

conda install -c conda-forge rise/// OR ///pip install RISE

现在,你可以从你的Notebook上创建有趣的幻灯片,只需点击新建按钮:

快速提升Python数据分析能力的七个神奇方法

 

原文链接:

https://towardsdatascience.com/7-things-to-quickly-improve-your-data-analysis-in-python-3d434243da7



Tags:快速提升Python数据分析能力   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
前言使用Python进行数据分析是一件专业领域的事情,所以要想强化数据分析的技能,需要大家不断练习。同时,我们也需要向有经验的数据分析师学习他们的专业技巧。这篇文章我们介绍...【详细内容】
2020-07-26  Tags: 快速提升Python数据分析能力  点击:(41)  评论:(0)  加入收藏
▌简易百科推荐
Python 是一个很棒的语言。它是世界上发展最快的编程语言之一。它一次又一次地证明了在开发人员职位中和跨行业的数据科学职位中的实用性。整个 Python 及其库的生态系统使...【详细内容】
2021-12-27  IT资料库    Tags:Python 库   点击:(1)  评论:(0)  加入收藏
菜单驱动程序简介菜单驱动程序是通过显示选项列表从用户那里获取输入并允许用户从选项列表中选择输入的程序。菜单驱动程序的一个简单示例是 ATM(自动取款机)。在交易的情况下...【详细内容】
2021-12-27  子冉爱python    Tags:Python   点击:(4)  评论:(0)  加入收藏
有不少同学学完Python后仍然很难将其灵活运用。我整理15个Python入门的小程序。在实践中应用Python会有事半功倍的效果。01 实现二元二次函数实现数学里的二元二次函数:f(x,...【详细内容】
2021-12-22  程序汪小成    Tags:Python入门   点击:(32)  评论:(0)  加入收藏
Verilog是由一个个module组成的,下面是其中一个module在网表中的样子,我只需要提取module名字、实例化关系。module rst_filter ( ...); 端口声明... wire定义......【详细内容】
2021-12-22  编程啊青    Tags:Verilog   点击:(7)  评论:(0)  加入收藏
运行环境 如何从 MP4 视频中提取帧 将帧变成 GIF 创建 MP4 到 GIF GUI ...【详细内容】
2021-12-22  修道猿    Tags:Python   点击:(5)  评论:(0)  加入收藏
面向对象:Object Oriented Programming,简称OOP,即面向对象程序设计。类(Class)和对象(Object)类是用来描述具有相同属性和方法对象的集合。对象是类的具体实例。比如,学生都有...【详细内容】
2021-12-22  我头秃了    Tags:python   点击:(9)  评论:(0)  加入收藏
所谓内置函数,就是Python提供的, 可以直接拿来直接用的函数,比如大家熟悉的print,range、input等,也有不是很熟,但是很重要的,如enumerate、zip、join等,Python内置的这些函数非常...【详细内容】
2021-12-21  程序员小新ds    Tags:python初   点击:(5)  评论:(0)  加入收藏
Hi,大家好。我们在接口自动化测试项目中,有时候需要一些加密。今天给大伙介绍Python实现各种 加密 ,接口加解密再也不愁。目录一、项目加解密需求分析六、Python加密库PyCrypto...【详细内容】
2021-12-21  Python可乐    Tags:Python   点击:(7)  评论:(0)  加入收藏
借助pyautogui库,我们可以轻松地控制鼠标、键盘以及进行图像识别,实现自动抢课的功能1.准备工作我们在仓库里提供了2个必须的文件,包括: auto_get_lesson_pic_recognize.py:脚本...【详细内容】
2021-12-17  程序员道道    Tags:python   点击:(13)  评论:(0)  加入收藏
前言越来越多开发者表示,自从用了Python/Pandas,Excel都没有打开过了,用Python来处理与可视化表格就是四个字&mdash;&mdash;非常快速!下面我来举几个明显的例子1.删除重复行和空...【详细内容】
2021-12-16  查理不是猹    Tags:Python   点击:(20)  评论:(0)  加入收藏
相关文章
    无相关信息
最新更新
栏目热门
栏目头条