您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python线上环境如何优雅地使用日志?

时间:2021-03-08 10:12:08  来源:今日头条  作者:小白学Python
Python线上环境如何优雅地使用日志?

 

瞎比比

这篇文章其实早在一个月之前就写好了。奈何,加班猛如虎,真的怕了。直至今天才幸运地有了个双休,赶紧排版一下文章发布了。以下为正文。

源码地址:

https://github.com/zonezoen/blog/tree/master/Python/ target=_blank class=infotextkey>Python/logging_model

在初学 Python 的时候,我们使用

print("hello world")

输出了我们的第一行代码。在之后的日子里,便一直使用 print 进行调试(当然,还有 IDE 的 debug 模式)。但是,当你在线上运行 Python 脚本的时候,你并不可能一直守着你的运行终端。可是如果不守着的话,每当出现 bug ,错误又无从查起。这个时候,你需要对你的调试工具进行更新换代了,这里我推荐一个优雅的调试工具 logging。

与 print 相比 logging 有什么优势?

那既然我推荐这个工具,它凭什么要被推荐呢?且来看看它有什么优势:

  • 可以输出到多处,例如:在输出到控制台的同时,可以保存日志到日志文件里面,或者保存到其他远程服务器
  • 可以设置日志等级,DEBUG、INFO、ERROR等,在不同的环境(调试环境、线上环境)使用不同的等级来过滤日志,使用起来很方便
  • 配置灵活,可保存到配置文件,格式化输出

基础用法

下面涉及到的代码我都省略了导包部分,详见源码(后台回复 logging 获取源码)

base_usage.py

logging.basicConfig(level=log_level, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
logger.info("Log level info")
logger.debug("Log level debug")
logger.warning("Log level warning")
# 捕获异常,并打印出出错行数
try:
 raise Exception("my exception")
except (SystemExit, KeyboardInterrupt):
 raise
except Exception:
 logger.error("there is an error =>", exc_info=True)

level 为日志等级,分为:

FATAL:致命错误
CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
ERROR:发生错误时,如IO操作失败或者连接问题
WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
INFO:处理请求或者状态变化等日常事务
DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态

foamat 可以格式化输出,其参数有如下:

%(levelno)s:打印日志级别的数值
%(levelname)s:打印日志级别的名称
%(pathname)s:打印当前执行程序的路径,其实就是sys.argv[0]
%(filename)s:打印当前执行程序名
%(funcName)s:打印日志的当前函数
%(lineno)d:打印日志的当前行号
%(asctime)s:打印日志的时间
%(thread)d:打印线程ID
%(threadName)s:打印线程名称
%(process)d:打印进程ID
%(message)s:打印日志信息

捕获异常,以下两行代码都具有相同的作用

logger.exception(msg,_args)
logger.error(msg,exc_info = True,_args)

保存到文件,并输出到命令行

这个用法直接 copy 使用就行

import logging
# 写入文件
import logging
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler("info.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info("Log level info")
logger.debug("Log level debug")
logger.warning("Log level warning")
# 写入文件,同时输出到屏幕
import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("info.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logger.addHandler(handler)
logger.addHandler(console)
logger.info("Log level info")
logger.debug("Log level debug")
logger.warning("Log level warning")
Python线上环境如何优雅地使用日志?

 

多模块使用 logging

被调用者的日志格式会与调用者的日志格式一样

main.py

# -*- coding: utf-8 -*-
__auth__ = 'zone'
__date__ = '2019/6/17 下午11:46'
'''
公众号:zone7
小程序编程面试题库
'''
import os
import logging
from python.logging_model.code import sub_of_main
logger = logging.getLogger("zone7Model")
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
logger.addHandler(handler)
logger.addHandler(console)
sub = sub_of_main.SubOfMain()
logger.info("main module log")
sub.print_some_log()

sub_of_main.py

# -*- coding: utf-8 -*-
__auth__ = 'zone'
__date__ = '2019/6/17 下午11:47'
'''
公众号:zone7
小程序:编程面试题库
'''
import logging
module_logger = logging.getLogger("zone7Model.sub.module")
class SubOfMain(object):
 def __init__(self):
 self.logger = logging.getLogger("zone7Model.sub.module")
 self.logger.info("init sub class")
 def print_some_log(self):
 self.logger.info("sub class log is printed")
def som_function():
 module_logger.info("call function some_function")

使用配置文件配置 logging

这里分别给出了两种配置文件的使用案例,都分别使用了三种输出,输出到命令行、输出到文件、将错误信息独立输出到一个文件

log_cfg.json

{
 "version":1,
 "disable_existing_loggers":false,
 "formatters":{
 "simple":{
 "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 }
 },
 "handlers":{
 "console":{
 "class":"logging.StreamHandler",
 "level":"DEBUG",
 "formatter":"simple",
 "stream":"ext://sys.stdout"
 },
 "info_file_handler":{
 "class":"logging.handlers.RotatingFileHandler",
 "level":"INFO",
 "formatter":"simple",
 "filename":"info.log",
 "maxBytes":10485760,
 "backupCount":20,
 "encoding":"utf8"
 },
 "error_file_handler":{
 "class":"logging.handlers.RotatingFileHandler",
 "level":"ERROR",
 "formatter":"simple",
 "filename":"errors.log",
 "maxBytes":10485760,
 "backupCount":20,
 "encoding":"utf8"
 }
 },
 "loggers":{
 "my_module":{
 "level":"ERROR",
 "handlers":["info_file_handler2"],
 "propagate":"no"
 }
 },
 "root":{
 "level":"INFO",
 "handlers":["console","info_file_handler","error_file_handler"]
 }
}

通过 json 文件读取配置:

import json
import logging.config
import os
def set_log_cfg(default_path="log_cfg.json", default_level=logging.INFO, env_key="LOG_CFG"):
 path = default_path
 value = os.getenv(env_key, None)
 if value:
 path = value
 if os.path.exists(path):
 with open(path, "r") as f:
 config = json.load(f)
 logging.config.dictConfig(config)
 else:
 logging.basicConfig(level=default_level)
def record_some_thing():
 logging.info("Log level info")
 logging.debug("Log level debug")
 logging.warning("Log level warning")
if __name__ == "__main__":
 set_log_cfg(default_path="log_cfg.json")
 record_some_thing()

log_cfg.yaml

version: 1
disable_existing_loggers: False
formatters:
 simple:
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
 console:
 class: logging.StreamHandler
 level: DEBUG
 formatter: simple
 stream: ext://sys.stdout
 info_file_handler:
 class: logging.handlers.RotatingFileHandler
 level: INFO
 formatter: simple
 filename: info.log
 maxBytes: 10485760
 backupCount: 20
 encoding: utf8
 error_file_handler:
 class: logging.handlers.RotatingFileHandler
 level: ERROR
 formatter: simple
 filename: errors.log
 maxBytes: 10485760
 backupCount: 20
 encoding: utf8
loggers:
 my_module:
 level: ERROR
 handlers: [info_file_handler]
 propagate: no
root:
 level: INFO
 handlers: [console,info_file_handler,error_file_handler]

通过 yaml 文件读取配置:

import yaml
import logging.config
import os
def set_log_cfg(default_path="log_cfg.yaml", default_level=logging.INFO, env_key="LOG_CFG"):
 path = default_path
 value = os.getenv(env_key, None)
 if value:
 path = value
 if os.path.exists(path):
 with open(path, "r") as f:
 config = yaml.load(f)
 logging.config.dictConfig(config)
 else:
 logging.basicConfig(level=default_level)
def record_some_thing():
 logging.info("Log level info")
 logging.debug("Log level debug")
 logging.warning("Log level warning")
if __name__ == "__main__":
 set_log_cfg(default_path="log_cfg.yaml")
 record_some_thing()


Tags:Python日志   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
瞎比比这篇文章其实早在一个月之前就写好了。奈何,加班猛如虎,真的怕了。直至今天才幸运地有了个双休,赶紧排版一下文章发布了。以下为正文。源码地址:https://github.com/zone...【详细内容】
2021-03-08  Tags: Python日志  点击:(242)  评论:(0)  加入收藏
▌简易百科推荐
近几年 Web3 被炒得火热,但是大部分人可能还不清楚什么是 Web3,今天就让w3cschool编程狮小师妹带你了解下 Web3 是什么?与我们熟知的 Web1 和 Web2 又有什么区别呢?web3.0什么是...【详细内容】
2022-07-15  编程狮W3Cschool    Tags:Web3.0   点击:(2)  评论:(0)  加入收藏
1、让我们一起来看下吧,直接上图。 第一眼看到是不是觉得很高逼格,暗黑画风,这很大佬。其实它就是------AidLearning。一个运行在安卓平台的linux系统,而且还包含了许多非常强大...【详细内容】
2022-07-15  IT智能化专栏    Tags:AidLearning   点击:(2)  评论:(0)  加入收藏
真正的大师,永远都怀着一颗学徒的心! 一、项目简介 今天说的这个软件是一款基于Python+vue的自动化运维、完全开源的云管理平台。二、实现功能 基于RBAC权限系统 录像回放 ...【详细内容】
2022-07-14  菜鸟程序猿    Tags:Python   点击:(3)  评论:(0)  加入收藏
前言今天笔者想和大家来聊聊python接口自动化的MySQL数据连接,废话不多说咱们直接进入主题吧。 一、什么是 PyMySQL?PyMySQL是在Python3.x版本中用于连接MySQL服务器的一个库,P...【详细内容】
2022-07-11  测试架构师百里    Tags:python   点击:(19)  评论:(0)  加入收藏
aiohttp什么是 aiohttp?一个异步的 HTTP 客户端\服务端框架,基于 asyncio 的异步模块。可用于实现异步爬虫,更快于 requests 的同步爬虫。安装pip install aiohttpaiohttp 和 r...【详细内容】
2022-07-11  VT漫步    Tags:aiohttp   点击:(15)  评论:(0)  加入收藏
今天我们学习下 Queue 的进阶用法。生产者消费者模型在并发编程中,比如爬虫,有的线程负责爬取数据,有的线程负责对爬取到的数据做处理(清洗、分类和入库)。假如他们是直接交互的,...【详细内容】
2022-07-06  VT漫步    Tags:Python Queue   点击:(34)  评论:(0)  加入收藏
继承:是面向对象编程最重要的特性之一,例如,我们每个人都从祖辈和父母那里继承了一些体貌特征,但每个人却又不同于父母,有自己独有的一些特性。在面向对象中被继承的类是父类或基...【详细内容】
2022-07-06  至尊小狸子    Tags:python   点击:(25)  评论:(0)  加入收藏
点击上方头像关注我,每周上午 09:00准时推送,每月不定期赠送技术书籍。本文1553字,阅读约需4分钟 Hi,大家好,我是CoCo。在上一篇Python自动化测试系列文章:Python自动化测试之P...【详细内容】
2022-07-05  CoCo的软件测试小栈    Tags:Python   点击:(27)  评论:(0)  加入收藏
第一种方式:res = requests.get(url, params=data, headers = headers)第二种方式:res = requests.get(url, data=data, headers = headers)注意:1.url格式入参只支持第一种方...【详细内容】
2022-07-05  独钓寒江雪之IT    Tags:Python request   点击:(19)  评论:(0)  加入收藏
什么是python类的多态python的多态,可以为不同的类实例,或者说不同的数据处理方式,提供统一的接口。用比喻的方式理解python类的多态比如,同一个苹果(统一的接口)在孩子的眼里(类实...【详细内容】
2022-07-04  写小说的程序员    Tags:python类   点击:(28)  评论:(0)  加入收藏
相关文章
    无相关信息
站内最新
站内热门
站内头条