您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python Pandas数据预处理:你知道数据标准化吗?

时间:2023-11-27 14:23:06  来源:微信公众号  作者:自由学习屋

数据预处理包括以下几个方面:

  • 缺失值处理
  • 数据格式化
  • 数据规范化
  • 数据标准化
  • 数据分箱(分组)

标准化经常容易与规范化混淆,但它们指的是不同的东西。规范化涉及将不同比例的度量值调整到一个共同的比例,而标准化则是将特征值转换为均值为零,标准差为1的分布。标准化也是通过 z-score 转换来实现的,其中新值是用当前值与平均值之间的差,除以标准差计算得来的。

Z-score 是一种统计度量值,用于确定单个数据点与数据集其余部分的距离,它可以用来检测数据集中的异常值。

在本教程中,我们将考虑两种类型的标准化:

  • z 得分(z-score)
  • z 映射(z-map)

一、数据准备(Data Preparation)

本教程的示例数据集还是继续沿用上一个教程(Part 3)中的新冠肺炎数据集,获取方式见上一个教程的文末。

首先,我们需要导入 Python/ target=_blank class=infotextkey>Python pandas 库,并通过 read_csv() 函数读取数据集。然后我们可以删除所有具有 NaN 值的列,通过 dropna() 函数来实现的。

import pandas  as pd


df = pd.read_csv('datasets/dpc-covid19-ita-regioni.csv')
df.dropna(axis=1, inplace=True)
df.tAIl(10)

Python Pandas数据预处理:你知道数据标准化吗?图片

二、z 得分(Z-Score)

前面说过,标准化是将数据集中的特征值转换为具有均值为 0 和标准差为 1 的分布。Z-Score 标准化的公式为:

其中  是当前特征值, 是均值, 是标准差。

例如,我们可以计算列 deceduti 的 z 得分。我们可以使用 scipy.stats 库的 zscore() 函数实现。

from scipy.stats import zscore


df['zscore-deceduti'] = zscore(df['deceduti'])
df['zscore-deceduti']

Python Pandas数据预处理:你知道数据标准化吗?图片

三、z 映射(Z-Map)

z 映射的值是用当前特征值与比较数组的平均值之差,除以比较数组的标准差计算得来的。例如,我们可以计算列 deceduti 的 z-map,使用列 terapia_intenva 作为比较数组。我们可以使用 scipy.stats 库的 zmap() 函数实现。

from scipy.stats import zmap

df['zmap-deceduti'] = zmap(df['deceduti'], df['terapia_intensiva'])
df['zmap-deceduti']

Python Pandas数据预处理:你知道数据标准化吗?图片

四、异常值检测(Detect Outliers)

标准化可以用来检测和删除异常值。例如,可以定义一个阈值来指定哪些值可以被视为异常值。在本例中,我们设置 threshold = 2。我们可以在原始数据框中添加一个新的列 outliers,如果特征值小于-2或大于2,则将异常标记列的值设置为 True,否则为 False。我们可以使用 numpy 库的 where() 函数来执行比较。

import numpy as np

threshold = 2
df['outliers'] = np.where((df['zscore-deceduti'] - threshold > 0), True, 
                          np.where(df['zscore-deceduti'] + threshold < 0, True, False))
df['outliers']

Python Pandas数据预处理:你知道数据标准化吗?图片

现在,我们可以使用 drop() 函数删除异常值。

df.drop(df[df['outliers'] == True].index, inplace=True)
df

Python Pandas数据预处理:你知道数据标准化吗?图片

五、总结(Summary)

在本教程中,我解释了规范化和标准化之间的区别,规范化在某种程度上包括标准化。

数据标准化的方法有两种:z-score 和 z-map。

标准化可用于检测和删除数据集中的异常值。此外,它还可以用于在不同的数据集之间进行比较。



Tags:Pandas   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
让你的Pandas代码快得离谱的两个技巧
如果你曾经使用过Pandas处理表格数据,你可能会熟悉导入数据、清洗和转换的过程,然后将其用作模型的输入。然而,当你需要扩展和将代码投入生产时,你的Pandas管道很可能开始崩溃并...【详细内容】
2024-01-19  Search: Pandas  点击:(78)  评论:(0)  加入收藏
Pandas的魅力:从数据处理到机器学习
Part 01、 Series和DataFrame:Pandas的核心Pandas的两个主要数据结构是Series和DataFrame。Series是一维标记数组,类似于Python中的列表。而DataFrame是二维标记数据结构,类似...【详细内容】
2023-12-18  Search: Pandas  点击:(126)  评论:(0)  加入收藏
Python 数据处理,Pandas 使用方式的变局
前段时间在公司技术分享会上,同事介绍了目前市面上关于自动生成 pandas 代码的工具库。我们也尝试把这些工具库引入到工作流程中。经过一段时间的实践,最终还是觉得不适合,不再...【详细内容】
2023-12-12  Search: Pandas  点击:(156)  评论:(0)  加入收藏
一个闪电般快速的 DataFrame 处理库,完美替代 Pandas
众所周知,SQL和Pandas是数据科学领域常用工具,精通这两大工具对数据科学家来说极有价值。而最近,又有一个新的工具库&mdash;&mdash;「Polars」也开始受到青睐。Polars简介Polar...【详细内容】
2023-12-11  Search: Pandas  点击:(155)  评论:(0)  加入收藏
四个解决特定的任务的Pandas高效代码
在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。从列表中创建字典我有一份商品清单,我想看看它们的分布情...【详细内容】
2023-12-06  Search: Pandas  点击:(176)  评论:(0)  加入收藏
Python Pandas数据预处理:你知道数据标准化吗?
数据预处理包括以下几个方面: 缺失值处理 数据格式化 数据规范化 数据标准化 数据分箱(分组)标准化经常容易与规范化混淆,但它们指的是不同的东西。规范化涉及将不同比例的度量...【详细内容】
2023-11-27  Search: Pandas  点击:(147)  评论:(0)  加入收藏
如何用Python的pandas库函数重命名列名
题目DataFrame students+-------------+--------+| Column Name | Type |+-------------+--------+| id | int || first | object || last | ob...【详细内容】
2023-10-31  Search: Pandas  点击:(304)  评论:(0)  加入收藏
Python数据分析库 Pandas,数据处理与分析的得力助手!
Python的Pandas库(Python Data Analysis Library)是数据科学家和分析师的得力助手,它提供了强大的数据处理和分析工具,使得数据的导入、清洗、转换和分析变得更加高效和便捷。本...【详细内容】
2023-10-20  Search: Pandas  点击:(130)  评论:(0)  加入收藏
使用Pandas进行时间重采样,充分挖掘数据价值
一、简介时间序列数据蕴含着很大价值,通过重采样技术可以提升原始数据的表现形式。无论你是数据科学家、分析师,还是对数据挖掘感兴趣,都可以从本文学习方法和工具,提升数据可视...【详细内容】
2023-10-17  Search: Pandas  点击:(315)  评论:(0)  加入收藏
向量化操作简介和Pandas、Numpy示例
Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什...【详细内容】
2023-10-16  Search: Pandas  点击:(263)  评论:(0)  加入收藏
▌简易百科推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(15)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(31)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(32)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(32)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(84)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  科学随想录  微信公众号  Tags:Graphlib库   点击:(86)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  大雷家吃饭    Tags:Python   点击:(58)  评论:(0)  加入收藏
使用Python进行数据分析,需要哪些步骤?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特...【详细内容】
2024-01-15  程序员不二    Tags:Python   点击:(161)  评论:(0)  加入收藏
Python语言的特点及应用场景, 同其它语言对比优势
Python语言作为一种高级编程语言,具有许多独特的特点和优势,这使得它在众多编程语言中脱颖而出。在本文中,我们将探讨Python语言的特点、应用场景以及与其他语言的对比优势。一...【详细内容】
2024-01-09    今日头条  Tags:Python语言   点击:(251)  评论:(0)  加入收藏
站内最新
站内热门
站内头条