您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

向量化操作简介和Pandas、Numpy示例

时间:2023-10-16 13:35:56  来源:微信公众号  作者:DeepHub IMBA

Pandas是一种流行的用于数据操作的Python/ target=_blank class=infotextkey>Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什么是向量化,以及它如何简化数据分析任务。

向量化操作简介和Pandas、Numpy示例

什么是向量化?

向量化是将操作应用于整个数组或数据系列的过程,而不是逐个遍历每个元素。在Pandas中可以对整个列或Series执行操作,而无需编写显式循环。这种高效的方法利用了底层优化的库,使您的代码更快、更简洁。

向量化操作示例

1、基本算术运算

一个具有两列的DataFrame, ' a '和' B ',我们希望以元素方式添加这两列,并将结果存储在新列' C '中。通过向量化,你可以在一行代码中实现这一点:

import pandas as pd
 
 data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
 df = pd.DataFrame(data)
 # Using vectorization to add columns 'A' and 'B'
 df['C'] = df['A'] + df['B']
 print(df['C'])
 
 Output:
 0   5
 1   7
 2   9

在本例中,加法运算df['A'] + df['B']同时应用于整个列'A'和'B',结果存储在列'C'中。

2、Apply

向量化还允许对列应用自定义函数。假设你想计算一列中每个元素的平方:

import pandas as pd
 
 data = {'A': [1, 2, 3]}
 df = pd.DataFrame(data)
 # Define a custom function
 def square(x):
    return x ** 2
 
 # Applying the 'square' function to the 'A' column
 df['A_squared'] = df['A'].apply(square)
 print(df['A_squared'])
 
 Output:
 0   1
 1   4
 2   9

使用.apply()将平方函数应用于整个'A'列。不需要显式循环。

3、条件操作

也将矢量化用于条件操作,比如基于列a中的条件创建一个新的列D:

import pandas as pd
 
 data = {'A': [1, 2, 3]}
 df = pd.DataFrame(data)
 
 # Creating a new column 'D' based on a condition in column 'A'
 df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd')
 
 print(df)
 
 Output:
    A     D
 0 1   Odd
 1 2 Even
 2 3   Odd

使用lambda函数来检查' a '中的每个元素是偶数还是奇数,并将结果分配给' D '列。

向量化的好处

在Pandas中向量化提供了几个好处:

  • 效率:操作针对性能进行了优化,并且比传统的基于循环的操作快得多,特别是在大型数据集上。
  • 清晰度:与显式循环的代码相比,代码通常更简洁,更容易阅读。
  • 易用性:您可以使用一行代码将操作应用于整个行或列,降低了脚本的复杂性。
  • 兼容性:Pandas与其他数据科学库(如NumPy和scikit-learn)无缝集成,可以在数据分析和机器学习项目中有效地使用向量化数据。

向量化提高代码的速度

向量化是一种强大的编程技术,可以加快代码的执行速度。这种方法利用底层优化的硬件指令和库,使计算更快、更高效。让我们以Python和NumPy为例,探索向量化如何加快代码的速度。

传统的基于循环的处理

在许多编程场景中,可能需要对数据元素集合执行相同的操作,例如逐个添加两个数组或对数组的每个元素应用数学函数。一般都会使用循环一次迭代一个元素并执行操作。

下面是一个没有向量化的Python示例:

list1 = [1, 2, 3, 4, 5]
 list2 = [6, 7, 8, 9, 10]
 result = []
 
 for i in range(len(list1)):
    result.append(list1[i] + list2[i])
 print(result)
 
 Output:
 [7, 9, 11, 13, 15]

虽然此代码可以工作,但它在循环中单独处理每个元素,这对于大型数据集来说可能很慢。

使用NumPy进行向量化操作

NumPy是一个流行的Python库,提供对向量化操作的支持。它利用了优化的C和Fortran库,使其在数值计算方面比纯Python循环快得多。

下面是使用NumPy的相同加法操作:

array1 = np.array([1, 2, 3, 4, 5])
 array2 = np.array([6, 7, 8, 9, 10])
 result = array1 + array2
 print(result)
 
 Output:
 [ 7 9 11 13 15]

NumPy可以一次对整个数组执行操作,并且更有效地处理底层细节。

效率比较

比较一下使用NumPy和Python中传统的基于循环的方法执行元素加法所花费的时间。我们将使用timeit模块来度量这两个方法的执行时间。下面是比较的代码:

import numpy as np
 import timeit
 
 # Create two NumPy arrays and two lists for the comparison
 array1 = np.random.randint(1, 100, size=1000000)
 array2 = np.random.randint(1, 100, size=1000000)
 list1 = list(array1)
 list2 = list(array2)
 
 # Vectorized processing with NumPy
 def numpy_vectorized():
    result = array1 + array2
 
 # Traditional loop-based processing
 def loop_based():
    result = []
    for i in range(len(list1)):
        result.append(list1[i] + list2[i])
 
 # Measure execution time for NumPy vectorized approach
 numpy_time = timeit.timeit(numpy_vectorized, number=100)
 
 # Measure execution time for traditional loop-based approach
 loop_time = timeit.timeit(loop_based, number=100)
 
 print(f"NumPy Vectorized Approach: {numpy_time:.5f} seconds")
 print(f"Traditional Loop-Based Approach: {loop_time:.5f} seconds")
 
 
 Output:
 NumPy Vectorized Approach: 0.30273 seconds
 Traditional Loop-Based Approach: 17.91837 seconds

可以看到NumPy向量化方法对于大数据集的速度要快得多,因为它的矢量化操作是经过优化的。

向量化加速代码的原理

向量化为加快代码速度提供了几个优势:

减少循环开销:在传统循环中,存在与管理循环索引和检查循环条件相关的开销。通过向量化,可以消除这些开销,因为这些操作应用于整个数组。

优化的低级指令:像NumPy这样的库使用优化的低级指令(例如,现代cpu上的SIMD指令)来对数组执行操作,充分利用硬件功能。这可以显著提高速度。

并行性:一些向量化操作可以并行化,这意味着现代处理器可以同时执行多个操作。这种并行性进一步加快了计算速度。

总结

Pandas和NumPy等库中的向量化是一种强大的技术,可以提高Python中数据操作任务的效率。可以以高度优化的方式对整个列或数据集合执行操作,从而生成更快、更简洁的代码。所以无论是在处理基本算术、自定义函数还是条件操作,利用向量化都可以极大地改进数据分析工作流。



Tags:Pandas   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
让你的Pandas代码快得离谱的两个技巧
如果你曾经使用过Pandas处理表格数据,你可能会熟悉导入数据、清洗和转换的过程,然后将其用作模型的输入。然而,当你需要扩展和将代码投入生产时,你的Pandas管道很可能开始崩溃并...【详细内容】
2024-01-19  Search: Pandas  点击:(79)  评论:(0)  加入收藏
Pandas的魅力:从数据处理到机器学习
Part 01、 Series和DataFrame:Pandas的核心Pandas的两个主要数据结构是Series和DataFrame。Series是一维标记数组,类似于Python中的列表。而DataFrame是二维标记数据结构,类似...【详细内容】
2023-12-18  Search: Pandas  点击:(126)  评论:(0)  加入收藏
Python 数据处理,Pandas 使用方式的变局
前段时间在公司技术分享会上,同事介绍了目前市面上关于自动生成 pandas 代码的工具库。我们也尝试把这些工具库引入到工作流程中。经过一段时间的实践,最终还是觉得不适合,不再...【详细内容】
2023-12-12  Search: Pandas  点击:(156)  评论:(0)  加入收藏
一个闪电般快速的 DataFrame 处理库,完美替代 Pandas
众所周知,SQL和Pandas是数据科学领域常用工具,精通这两大工具对数据科学家来说极有价值。而最近,又有一个新的工具库——「Polars」也开始受到青睐。Polars简介Polar...【详细内容】
2023-12-11  Search: Pandas  点击:(156)  评论:(0)  加入收藏
四个解决特定的任务的Pandas高效代码
在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。从列表中创建字典我有一份商品清单,我想看看它们的分布情...【详细内容】
2023-12-06  Search: Pandas  点击:(176)  评论:(0)  加入收藏
Python Pandas数据预处理:你知道数据标准化吗?
数据预处理包括以下几个方面: 缺失值处理 数据格式化 数据规范化 数据标准化 数据分箱(分组)标准化经常容易与规范化混淆,但它们指的是不同的东西。规范化涉及将不同比例的度量...【详细内容】
2023-11-27  Search: Pandas  点击:(147)  评论:(0)  加入收藏
如何用Python的pandas库函数重命名列名
题目DataFrame students+-------------+--------+| Column Name | Type |+-------------+--------+| id | int || first | object || last | ob...【详细内容】
2023-10-31  Search: Pandas  点击:(306)  评论:(0)  加入收藏
Python数据分析库 Pandas,数据处理与分析的得力助手!
Python的Pandas库(Python Data Analysis Library)是数据科学家和分析师的得力助手,它提供了强大的数据处理和分析工具,使得数据的导入、清洗、转换和分析变得更加高效和便捷。本...【详细内容】
2023-10-20  Search: Pandas  点击:(130)  评论:(0)  加入收藏
使用Pandas进行时间重采样,充分挖掘数据价值
一、简介时间序列数据蕴含着很大价值,通过重采样技术可以提升原始数据的表现形式。无论你是数据科学家、分析师,还是对数据挖掘感兴趣,都可以从本文学习方法和工具,提升数据可视...【详细内容】
2023-10-17  Search: Pandas  点击:(317)  评论:(0)  加入收藏
向量化操作简介和Pandas、Numpy示例
Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什...【详细内容】
2023-10-16  Search: Pandas  点击:(263)  评论:(0)  加入收藏
▌简易百科推荐
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(8)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(16)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(31)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(32)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(33)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(84)  评论:(0)  加入收藏
Python的Graphlib库,再也不用手敲图结构了
Python中的graphlib库是一个功能强大且易于使用的工具。graphlib提供了许多功能,可以帮助您创建、操作和分析图形对象。本文将介绍graphlib库的主要用法,并提供一些示例代码和...【详细内容】
2024-01-26  科学随想录  微信公众号  Tags:Graphlib库   点击:(86)  评论:(0)  加入收藏
Python分布式爬虫打造搜索引擎
简单分布式爬虫结构主从模式是指由一台主机作为控制节点负责所有运行网络爬虫的主机进行管理,爬虫只需要从控制节点那里接收任务,并把新生成任务提交给控制节点就可以了,在这个...【详细内容】
2024-01-25  大雷家吃饭    Tags:Python   点击:(58)  评论:(0)  加入收藏
使用Python进行数据分析,需要哪些步骤?
Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是在读一篇外语文章。Python这种特...【详细内容】
2024-01-15  程序员不二    Tags:Python   点击:(162)  评论:(0)  加入收藏
Python语言的特点及应用场景, 同其它语言对比优势
Python语言作为一种高级编程语言,具有许多独特的特点和优势,这使得它在众多编程语言中脱颖而出。在本文中,我们将探讨Python语言的特点、应用场景以及与其他语言的对比优势。一...【详细内容】
2024-01-09    今日头条  Tags:Python语言   点击:(252)  评论:(0)  加入收藏
站内最新
站内热门
站内头条