您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python 教你三分钟用 Bert 搭建问答搜索引擎

时间:2024-04-29 12:35:50  来源:微信公众号  作者:Python实用宝典

鼎鼎大名的 Bert 算法相信大部分同学都听说过,它是google推出的NLP领域“王炸级”预训练模型,其在NLP任务中刷新了多项记录,并取得state of the art的成绩。

但是有很多深度学习的新手发现BERT模型并不好搭建,上手难度很高,普通人可能要研究几天才能勉强搭建出一个模型。

没关系,今天我们介绍的这个模块,能让你在3分钟内基于BERT算法搭建一个问答搜索引擎。它就是 bert-as-service 项目。这个开源项目,能够让你基于多GPU机器快速搭建BERT服务(支持微调模型),并且能够让多个客户端并发使用。

1.准备

开始之前,你要确保Python/ target=_blank class=infotextkey>Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南。

请选择以下任一种方式输入命令安装依赖:1. windows 环境 打开 Cmd (开始-运行-CMD)。2. macOS 环境 打开 Terminal (command+空格输入Terminal)。3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install bert-serving-server # 服务端
pip install bert-serving-client # 客户端

请注意,服务端的版本要求:Python >= 3.5,Tensorflow >= 1.10 。

此外还要下载预训练好的BERT模型,在 https://Github.com/hanxiao/bert-as-service#install 上可以下载,如果你无法访问该网站,也可以在 https://pythondict.com/download/bert-serving-model/ 此处下载。

也可在Python实用宝典后台回复 bert-as-service 下载这些预训练好的模型。

下载完成后,将 zip 文件解压到某个文件夹中,例如 /tmp/uncased_L-24_H-1024_A-16/.

2.Bert-as-service 基本使用

安装完成后,输入以下命令启动BERT服务:

bert-serving-start -model_dir /tmp/uncased_L-24_H-1024_A-16/ -num_worker=4

-num_worker=4 代表这将启动一个有四个worker的服务,意味着它最多可以处理四个并发请求。超过4个其他并发请求将在负载均衡器中排队等待处理。

下面显示了正确启动时服务器的样子:

图片图片

使用客户端获取语句的编码

现在你可以简单地对句子进行编码,如下所示:

from bert_serving.client import BertClient
bc = BertClient()
bc.encode(['First do it', 'then do it right', 'then do it better'])

作为 BERT 的一个特性,你可以通过将它们与 |||(前后有空格)连接来获得一对句子的编码,例如

bc.encode(['First do it ||| then do it right'])

图片图片

远程使用 BERT 服务

你还可以在一台 (GPU) 机器上启动服务并从另一台 (CPU) 机器上调用它,如下所示:

# on another CPU machine
from bert_serving.client import BertClient
bc = BertClient(ip='xx.xx.xx.xx') # ip address of the GPU machine
bc.encode(['First do it', 'then do it right', 'then do it better'])

3.搭建问答搜索引擎

我们将通过 bert-as-service 从FAQ 列表中找到与用户输入的问题最相似的问题,并返回相应的答案。

FAQ列表其实就是官方文档的readme.md, 在我提供的下载链接里也附带了。

  • 加载所有问题,并显示统计数据:
prefix_q = '##### **Q:** '
with open('README.md') as fp:
    questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.startswith(prefix_q)]
    print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.split()) for d in questions])))
    # 33 questions loaded, avg. len of 9

一共有33个问题被加载,平均长度是9.

  • 然后使用预训练好的模型:uncased_L-12_H-768_A-12 启动一个Bert服务:
bert-serving-start -num_worker=1 -model_dir=/data/cips/data/lab/data/model/uncased_L-12_H-768_A-12
  • 接下来,将我们的问题编码为向量:
 
bc = BertClient(port=4000, port_out=4001)
doc_vecs = bc.encode(questions)
  • 最后,我们准备好接收用户的查询,并对现有问题执行简单的“模糊”搜索。

为此,每次有新查询到来时,我们将其编码为向量并计算其点积  doc_vecs 然后对结果进行降序排序,返回前N个类似的问题:

while True:
    query = input('your question: ')
    query_vec = bc.encode([query])[0]
    # compute normalized dot product as score
    score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
    topk_idx = np.argsort(score)[::-1][:topk]
    for idx in topk_idx:
        print('> %st%s' % (score[idx], questions[idx]))

完成!现在运行代码并输入你的查询,看看这个搜索引擎如何处理模糊匹配:

图片图片

完整代码如下,一共23行代码:

import numpy as np
from bert_serving.client import BertClient
from termcolor import colored

prefix_q = '##### **Q:** '
topk = 5

with open('README.md') as fp:
    questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.startswith(prefix_q)]
    print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.split()) for d in questions])))

with BertClient(port=4000, port_out=4001) as bc:
    doc_vecs = bc.encode(questions)

    while True:
        query = input(colored('your question: ', 'green'))
        query_vec = bc.encode([query])[0]
        # compute normalized dot product as score
        score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
        topk_idx = np.argsort(score)[::-1][:topk]
        print('top %d questions similar to "%s"' % (topk, colored(query, 'green')))
        for idx in topk_idx:
            print('> %st%s' % (colored('%.1f' % score[idx], 'cyan'), colored(questions[idx], 'yellow')))

够简单吧?当然,这是一个基于预训练的Bert模型制造的一个简单QA搜索模型。

你还可以微调模型,让这个模型整体表现地更完美,你可以将自己的数据放到某个目录下,然后执行 run_classifier.py 对模型进行微调,比如这个例子:

https://github.com/google-research/bert#sentence-and-sentence-pAIr-classification-tasks



Tags:Python   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
Python 教你三分钟用 Bert 搭建问答搜索引擎
鼎鼎大名的 Bert 算法相信大部分同学都听说过,它是Google推出的NLP领域“王炸级”预训练模型,其在NLP任务中刷新了多项记录,并取得state of the art的成绩。但是有很多深度学习...【详细内容】
2024-04-29  Search: Python  点击:(0)  评论:(0)  加入收藏
谷歌裁掉整个Python团队!PyTorch 创始人急得直骂人:“WTF!核心语言团队无可替换”
来源:InfoQ编辑 | Tina、褚杏娟、冬梅我们长期人手不足,但是我 20 年来最好的工作。 谷歌 Python 工程师、Python 指导委员会成员 Thomas Wouters 昨天在社交媒体上发布了一...【详细内容】
2024-04-29  Search: Python  点击:(2)  评论:(0)  加入收藏
探秘Python神器:eli5模块如何解读机器学习模型的预测结果?
在Python编程领域,有时候我们会遇到一些复杂的代码或者算法,很难理解其中的逻辑和原理。为了帮助我们更好地理解代码背后的运行机制,eli5模块应运而生。eli5模块是一个Python库...【详细内容】
2024-04-23  Search: Python  点击:(9)  评论:(0)  加入收藏
一篇文章教会你使用Python中三种简单的函数
所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。一、函数简介所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。二、函数定义...【详细内容】
2024-04-11  Search: Python  点击:(18)  评论:(0)  加入收藏
一篇文章带你了解Python的分布式进程接口
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。一、前言在Thread和Process中,应当优...【详细内容】
2024-04-11  Search: Python  点击:(16)  评论:(0)  加入收藏
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Search: Python  点击:(24)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Search: Python  点击:(29)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Search: Python  点击:(48)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  Search: Python  点击:(49)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  Search: Python  点击:(51)  评论:(0)  加入收藏
▌简易百科推荐
Python 教你三分钟用 Bert 搭建问答搜索引擎
鼎鼎大名的 Bert 算法相信大部分同学都听说过,它是Google推出的NLP领域“王炸级”预训练模型,其在NLP任务中刷新了多项记录,并取得state of the art的成绩。但是有很多深度学习...【详细内容】
2024-04-29  Python实用宝典  微信公众号  Tags:Python   点击:(0)  评论:(0)  加入收藏
探秘Python神器:eli5模块如何解读机器学习模型的预测结果?
在Python编程领域,有时候我们会遇到一些复杂的代码或者算法,很难理解其中的逻辑和原理。为了帮助我们更好地理解代码背后的运行机制,eli5模块应运而生。eli5模块是一个Python库...【详细内容】
2024-04-23  Python 集中营  微信公众号  Tags:Python   点击:(9)  评论:(0)  加入收藏
一篇文章教会你使用Python中三种简单的函数
所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。一、函数简介所谓函数,就是指:把某些特定功能的代码组成为一个整体,这个整体就叫做函数。二、函数定义...【详细内容】
2024-04-11  Go语言进阶学习  微信公众号  Tags:Python   点击:(18)  评论:(0)  加入收藏
一篇文章带你了解Python的分布式进程接口
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。一、前言在Thread和Process中,应当优...【详细内容】
2024-04-11  Go语言进阶学习    Tags:Python   点击:(16)  评论:(0)  加入收藏
Python 可视化:Plotly 库使用基础
当使用 Plotly 进行数据可视化时,我们可以通过以下示例展示多种绘图方法,每个示例都会有详细的注释和说明。1.创建折线图import plotly.graph_objects as go# 示例1: 创建简单...【详细内容】
2024-04-01  Python技术    Tags:Python   点击:(24)  评论:(0)  加入收藏
Python 办公神器:教你使用 Python 批量制作 PPT
介绍本文将介绍如何使用openpyxl和pptx库来批量制作PPT奖状。本文假设你已经安装了python和这两个库。本文的场景是:一名基层人员,要给一次比赛活动获奖的500名选手制作奖状,并...【详细内容】
2024-03-26  Python技术  微信公众号  Tags:Python   点击:(29)  评论:(0)  加入收藏
Python实现工厂模式、抽象工厂,单例模式
工厂模式是一种常见的设计模式,它可以帮助我们创建对象的过程更加灵活和可扩展。在Python中,我们可以使用函数和类来实现工厂模式。一、Python中实现工厂模式工厂模式是一种常...【详细内容】
2024-03-07  Python都知道  微信公众号  Tags:Python   点击:(48)  评论:(0)  加入收藏
不可不学的Python技巧:字典推导式使用全攻略
Python的字典推导式是一种优雅而强大的工具,用于创建字典(dict)。这种方法不仅代码更加简洁,而且执行效率高。无论你是Python新手还是有经验的开发者,掌握字典推导式都将是你技能...【详细内容】
2024-02-22  子午Python  微信公众号  Tags:Python技巧   点击:(49)  评论:(0)  加入收藏
如何进行Python代码的代码重构和优化?
Python是一种高级编程语言,它具有简洁、易于理解和易于维护的特点。然而,代码重构和优化对于保持代码质量和性能至关重要。什么是代码重构?代码重构是指在不改变代码外部行为的...【详细内容】
2024-02-22  编程技术汇    Tags:Python代码   点击:(51)  评论:(0)  加入收藏
Python开发者必备的八个PyCharm插件
在编写代码的过程中,括号几乎无处不在,以至于有时我们会拼命辨别哪个闭合括号与哪个开头的括号相匹配。这款插件能帮助解决这个众所周知的问题。前言在PyCharm中浏览插件列表...【详细内容】
2024-01-26  Python学研大本营  微信公众号  Tags:PyCharm插件   点击:(101)  评论:(0)  加入收藏
站内最新
站内热门
站内头条