新智元报道
作者:王嘉宁
编辑:LRS
【新智元导读】一站式NLP工具箱,你想要的全都有!
近日,华师大HugAILab团队研发了HugNLP框架,这是一个面向研究者和开发者的全面统一的NLP训练框架,可支持包括文本分类、文本匹配、问答、信息抽取、文本生成、小样本学习等多种NLP任务模型搭建和训练。
开源地址:https://Github.com/HugAILab/HugNLP
论文:https://arxiv.org/abs/2302.14286
值得注意的是,HugNLP还集成了大量最新的Prompt技术,例如Prompt-Tuning、In-Context Learning、Instruction-tuning,未来还将引入Chain-of-thought
HugAILab团队还研发了一系列的应用,例如CLUE&GLUE刷榜工具,可支持ChatGPT类模型训练和部署产品HugChat,以及统一信息抽取产品HugIE等。
HugNLP是一个分层式框架,遵循“高内聚低耦合”的开发模式,其核心包括模型层(Models)、处理器层(Processors)、评估器层(Evaluators)和应用层(Applications)四部分。
框架图如下所示:
HugNLP完全基于HuggingFace开发,具有易扩展、易部署能力,同时集成了MLFlow训练追踪器,方便使用者及时追踪实验进度,并进行实验分析。
HugNLP框架之所以称为全面,是因为其集成了大量的NLP任务模型,目前已经实现的包括:
快速部署HugNLP框架,只需要执行代码三行命令即可:
下面介绍HugNLP的几个核心能力:
一、Benchmark一键刷榜
HugNLP最先开发了面向一些常用榜单的刷榜工具,例如GLUE、CLUE等。用户只需要配置相应的数据集名称,即可实现一键刷榜。
为了验证框架的有效性,在22年9月提交了CLUE榜单的刷榜结果,选择一系列中文小模型(RoBERTa、macBERT、P-BERT等)并结合了logits集成方法,至今依然维持在第15名位置,曾一度超越了部分企业。
例如如果训练CLUE榜单的AFQMC数据集,可编辑文件
修改参数:
执行下列命令即可:
HugNLP还集成了一系列模型用于刷榜,例如BERT、RoBERTa、DeBERTa、MacBERT、Erlangshen等。
二、预训练与知识注入
传统的一些预训练模型(例如BERT、GPT2等)是在通用语料上训练的,而对领域事实知识可能不敏感,因此需要显式的在预训练阶段注入事实知识。
在HugNLP中,主要实现了几个知识增强预训练,包括DKPLM和KP-PLM。DKPLM是一种可分解的知识注入方法;KP-PLM则是将结构化知识转化为自然语言描述的形式进行注入。这些知识注入的方法是可插拔式的,因此无需修改模型结构,很容易用于下游任务的微调。
执行下面命令即可进行Masked Language Modeling和Causal Language Modeling的预训练:
三、 Fine-tuning & Prompt-Tuning
基于预训练语言模型的NLP,通常遵循Pre-training和Fine-tuning范式。HugNLP也包含Fine-tuning技术。
3.1 参数有效性学习
HugNLP集成了包括Prefix-tuning、Adapter、BitFit、LoRA等参数有效性训练方法,可以加速模型的训练,降低显存占用量。
在训练脚本中,只需要添加一行参数,即可开启参数有效性训练:
对于参数有效性方法,HugNLP实现了若干类别的分类模型,如下所示:
只需要指定下面参数即可,例如选择adapter进行分类:
3.2 对抗训练:引入对Embedding的扰动,提高模型的鲁棒性
HugNLP框架集成了若干种对抗训练的方法,其中最简单的对抗方法为FGM算法:
在训练时,只需要添加一行参数,即可默认调用FGM算法:
3.3 Prompt-tuning:通过模板来复用预训练目标
传统的Fine-tuning在低资源场景下容易出现过拟合问题,因此复用预训练的目标可以拉近Pre-training和Fine-tuning之间的语义差异。
HugNLP集成了PET、P-tuning、Prefix-tuning等Prompt-Tuning算法,并无缝嵌入在NLP分类任务的模型里。
在训练时,只需要指定下面两个参数,即可以开启Prompt-tuning模式,例如选择p-tuning算法:
四、Instruction-tuning
在大模型时代,如何将不同类型的NLP任务进行范式统一,是构造通用人工智能的核心要素。HugNLP为此定义了三种统一范式的思想:
基于三种不同的范式统一,HugNLP推出两个核心产品,分别是:
4.1 HugChat:基于Causal Language Modeling的生成式对话模型
最近ChatGPT火爆全球,为了让研究者可以训练自己的ChatGPT,HugNLP框架集成了基于生成式Instruction的训练产品——HugChat,其支持各种类型的单向生成式模型的训练,例如GPT-2、GPT-Neo、OPT、GLM、LLaMA等。
在8张V100 32G的条件下,可训练OPT-13B大模型。HugAILab团队开源了约200万条英文、300万条中文对话数据,用于训练模型。例如训练GPT-2(XL),可直接执行脚本:
基于HugNLP,训练的GPT-2(1.3B)模型,即可实现很简单的对话任务。只需要执行如下命令即可玩转HugChat:
例如可以写套磁信邮件:
再例如搜索谷歌地球的相关信息:
也可以实现编写简单的代码(1.3B的模型具备此能力已经很惊叹了!):
HugNLP目前正在开发其他类型的Decoder-only大模型,相关信息和开源内容如下表所示:
HugChat后期将推出垂直领域的大模型解决方案,同时将与OpenAI API进行融合,推出大模型服务框架。
4.2 HugIE:基于Global Pointer的统一信息抽取框架
我们基于HugNLP研发一款HugIE产品,旨在实现统一信息处理。其主要核心包括如下几个部分:
HugIE目前已经开源了模型:https://huggingface.co/wjn1996/wjn1996-hugnlp-hugie-large-zh 可以基于HugNLP框架使用HugIE抽取模型,如下图所示:
五、In-Context Learning
In-Context Learning(ICL) 首次由GPT-3提出,其旨在挑选少量的标注样本作为提示(Prompt),从而在形式上促使大模型生成目标答案。ICL的优势在于无需对参数进行更新,即可实现惊艳的效果。
HugNLP框架集成了ICL,主要涉及到样本的挑选和预测结果的校准两个部分:
目前ICL已经集成在HugNLP里,只需要指定下面参数即可:
六、半监督Self-training
半监督旨在同时结合标注数据和无标签数据来训练NLP任务。Self-training是一种简单但有效的迭代式训练方法,其通过Teacher模型先获取伪标签,对伪标签进行去噪后,再训练Student模型。传统的Self-training会引入大量噪声,从而降低训练的效果。
为了提高性能,HugNLP引入成熟的Uncertainty-aware Self-training技术。框架图如下所示:
其采用了来自贝叶斯推断中的MC Dropout技术,即对Teacher模型执行 次推理,每次推理开启Dropout开关,从而得到若干与Teacher模型满足独立同分布的模型预测。
基于这些预测结果,可以通过信息熵的变化量得到Teacher模型对无标签数据的不确定性量化指标(即BALD算法),核心公式如下:
进行多次DC Dropout的代码实现如下(详见hugnlp_trainer.py):
HugNLP使用半监督模式,只需要做两件事:
(1)执行脚本时添加参数:
(2)在指定的数据集目录下,存放unlabeled data文件。
七、其他更丰富的应用
目前HugNLP还开发了很多应用如下所示:还有更多丰富的应用正在开发中。HugNLP也欢迎有志之士加入HugAILab参与开源开发工作。
团队介绍
参考资料:
https://arxiv.org/abs/2302.14286