您当前的位置:首页 > 生活百科 > 科学

拓扑到底是什么

时间:2020-09-16 10:02:10  来源:  作者:

科学无国界

我们是知识的搬运工

“橡皮泥几何”入门

我在大学学习拓扑时,总是不可避免地会遇到朋友和亲戚们的提问:

“拓扑到底是什么?”

这个问题很难回答,每次我都会给出略有不同的答案,但是答案总是不那么令人满意。如果你曾经在网上搜索过拓扑,你肯定会遇到将甜甜圈变成咖啡杯的动画,同样,我给出的答案也都与此相关:为什么甜甜圈跟咖啡杯在拓扑结构上是一样的,立方体和球体拓扑上也是一样的。但是这样的答案并不能真正解释真实的拓扑是什么,拓扑怎么应用以及其真正的价值是什么。

拓扑到底是什么

著名的咖啡杯和甜甜圈动画 | wiki

如果你有学到一般拓扑学的本科课程,可能会难以将所学的东西跟熟悉的甜甜圈和咖啡杯动画联系起来。这篇文章的目的是建立一般拓扑的基本概念,并说明拓扑跟熟悉的动画以及其他几何思想之间的联系。接下来,我们来了解,为什么将甜甜圈和咖啡杯视为一样的东西会是有用、有价值的。

总的来说,我发现很多人(包括我自己)都在努力尝试去理解:怎么才能将抽象的数学应用到实际的现实中。在了解拓扑的基本思想之后,我们可以重新思考真实世界,也许会产生出乎意料的结果。在此之前,我们将介绍拓扑的基本概念,这也是了解拓扑必不可少的定义。

拓扑空间

拓扑空间是具有最基本的结构的一组数学对象。数学中的结构通常意味着:数学对象之间的相加、相乘、距离或其他的概念。显然,这些结构适用于我们日常中遇到的数字。

但是,拓扑空间的结构比加法、乘法和距离的思想更加基本。事实上,这些数字所在的空间是拓扑空间的一个特定情况,也就是说,实数实际上是拓扑空间的一个特殊情况。

拓扑空间上的结构称为空间拓扑。所有的拓扑都是数学对象的子集的集合,称为空间的“开集”。拓扑中包含的特定集合定义了空间的结构,这概念似乎很模糊和抽象,这是因为事实就是如此,这是数学中最抽象的结构形式。

当然,你不必完全理解此定义,只需记住拓扑及其内部的“开集”可以确定空间的结构。同样重要的是,使一个拓扑空间与另一个拓扑空间区分开的,是我们选择放入该空间拓扑中的集合。如果你感兴趣的话,以下是拓扑更加正式的定义。

拓扑空间定义

拓扑空间(X,τ)的数学对象集合是 X,空间拓扑是 τ,τ 包含 X 的一系列子集,满足下列条件:

1. X 和空集包含在 τ 中。

2. τ 中集合的任何并集也在 τ 中。

3. τ 中集合的任何有限交集也都在 τ 中。

那么,这怎么跟甜甜圈和咖啡杯联系起来呢?

通常,拓扑空间可以通过几何对象(例如球体)可视化:

拓扑到底是什么

图1 :球体

表示球体的拓扑空间是一些点的集合,如果将它们绘制在三维空间中,它们将构成一个球体以及一个拓扑。如前所述,拓扑定义了空间的结构,正是空间拓扑让这个球聚在一起不散开。我们可以将拓扑想象为“使所有点都不会掉落到地面上的事物”,它让球体保持单个物体的状态,而不仅仅是两个半球挤在一起。现在,设想一个如下图所示的拓扑空间:

拓扑到底是什么

图2:椭球

假设上面的球体(图1)是用橡皮泥制成的,那么我们可以轻松地将球体拉伸变成另一个对象椭球(图2)。三维对象能够执行此操作意味着这两个对象在拓扑上是相同(等价)的。这可能看起来很奇怪,但是仔细想一想,这两种形状有什么不同?虽然它们看起来不同,但是如果我们可以轻松地将它们挤压或拉伸实现形状的变化,它们是否真的是独特的?

这两个对象具有相同的拓扑,这意味着,即使这两个对象在几何形状上有所不同,但它们在拓扑上完全等价。我们可以将橡皮泥拉伸成可以想象的任何奇怪形状,但在拓扑结构世界中,所有这些形状都完全相同。也许你对拉伸的形状没有什么概念,但是关于如何拉伸橡皮泥的游戏有一些规则:

不允许在橡皮泥上打洞;

不允许将橡皮泥上的两点捏合在一起(我们没法将球形的橡皮泥做成甜甜圈的形状)。

如果我们在拉伸时违反了这些规则,那么这两个对象在拓扑上将不再等价。拓扑学家称这种不破坏既定规则的拉伸为同胚,这只是一种数学上精确地描述如何让橡皮泥的形状保持相同拓扑性质的方法。因此,如果我们可以得出两个拓扑空间之间的同胚性,则这些空间具有相同的拓扑,这就说到了咖啡杯和甜甜圈动画。

我们可以提供一个描述甜甜圈的拓扑空间,然后想象我们的甜甜圈是由橡皮泥制成的,然后在不破坏规则的情况下,将其拉伸到咖啡杯的形状。所以,是的,在拓扑结构上,咖啡杯和甜甜圈是同一件事。

拓扑到底是什么

图3:看起来不特别美味的甜甜圈

为什么球体不是甜甜圈?

现在,我们知道了如何判断两个对象在拓扑中的一致性,现在我们来看一下如何判断其在拓扑中的差异性。拓扑空间具有许多可以区分它们的不同属性。对于三维对象,例如球体和甜甜圈,我们可以用来区分二者的主要是它们具有的孔数。如果一个对象比另一个对象具有更多的孔,则二者在拓扑上是不同的。这是因为它们违反了我们先前建立的拉伸橡皮泥的规则。要造出一个孔,我们要么在橡皮泥上撕出一个洞,要么将橡皮泥拉伸成一个甜甜圈形状,然后将两端合并在一起。

拓扑到底是什么

图4:我们可以将橡皮泥球塑造成甜甜圈形状,但是在不违反规则的情况下,边线不能融合在一起。当我们将其弯曲成甜甜圈时,通心粉形状的两个圆形面仍然存在。

在拓扑上区分三维对象的另一种常用方法是,想象在三维对象上面行走。例如,在球体上行走。假设你从某个点开始,一直绕着球体上的一个大圆圈行走,当你再次到达同一点后,可以沿任一方向旋转90度,然后绕着另一个大圆圈走。在绕球的第二圈中,你将穿越第一条路径。无论你在球面上的哪一点上执行此操作,都会发生这种情况。

拓扑到底是什么

图5:具有两条相交路径的球体

在与球体拓扑等价的任何三维对象上也会发生这种现象。但是,在某些拓扑上与球体不等价的对象上,有方法可以做到这一点而不穿越第一条路径,你可以在甜甜圈上看到这个现象。

拓扑到底是什么

图6:如果我们从蓝色和绿色路径相交的地方开始,然后沿着绿色路径行走,这条路径跟我们已经走过的地方不相交。

对于拓扑等价的对象,他们的许多拓扑性质都是相同的;对于拓扑不等价的对象,这些拓扑性质则不一定相同。这些拓扑性质,就是用于确定两个对象拓扑等价与否的重要工具。

其他的拓扑对象

到目前为止,我们仅讨论了可以在3维中可视化的拓扑空间,但拓扑的一个优势是,它允许我们使用同样的方法轻松地描述4、5或更高维中存在的对象。

此类拓扑结构中经常出场的是克莱因瓶:

拓扑到底是什么

图7:三维空间中克莱因瓶的表示 | youtube:Numberphile

严格来说,我们实际上无法在三维空间中观察到真正的克莱因瓶,但是通过允许其自身交叉,我们可以对它的性质有所了解。在四维空间中,该对象实际上并不与自身交叉。很难想象的是,它会在第四维度弯曲以重新连接到自身。克莱因瓶看起来像有内外两侧,但是你可以从一个特定点沿一条连续的路径走,你将经过克莱因瓶的“外部”和“内部”,最后回到原始点,这说明克莱因瓶的3D表示在拓扑上是同一个面。因此,克莱因瓶没有容积。

但是,关于克莱因瓶上的路径的一个有趣的事情是,如果沿着上述路径行走,当你返回到原始位置时,你实际上将成为自己的镜像。这是与克莱因瓶在拓扑上等效(或同胚)的对象的拓扑属性。显然,克莱因瓶对球体或甜甜圈不是同胚的,因为无论我们在球体或甜甜圈上行走的方式如何,当我们回到起点时,我们都不会成为自己的镜像。如果对象具有成为自己镜像的这种属性,则将它们称为不可定向的。克莱因瓶不可定向,球形和甜甜圈可定向。另一个著名的不可定向表面是莫比乌斯带,这个很容易用纸条制作,网上也有很多教程。

拓扑到底是什么

当螃蟹在莫比乌斯带上行走并返回其原始位置时,它就是其自身的镜像。资料来源:Wikimedia Commons

尽管莫比乌斯带不可定向,但它在拓扑结构上不等同于克莱因瓶,而且其结构是一个整体。虽然可以通过将两个莫比乌斯条的边缘粘合在一起来构造克莱因瓶,但实际上在三维空间中这样做是不可能的(你可以尝试)。

用一张纸构造一个甜甜圈

研究在三维空间中难以可视化的对象(例如克莱因瓶)的拓扑的一种更实用的方法是考虑其粘合图,粘合图通过拉伸和粘合2D形状的边缘的方式,来指导我们如何构造具有特定拓扑的对象。

在考虑复杂形状的粘合图之前,首先考虑一个更简单形状的粘合图,甜甜圈:

图7:甜甜圈的粘贴图

我们假设图中的正方形是用橡皮泥制成的,然后想象一下拉伸正方形让对侧的边缘附着在一起或粘贴起来。当我们将这些边缘粘合在一起时,我们需要箭头指向同一方向。因此,我们将上图扩展如下:

拓扑到底是什么

图8:如何从其粘合图构造甜甜圈

下一个图类似于图 7,除了两个红色箭头现在处于相反的方向。这意味着我们需要扭曲对象,以便在将边缘胶合在一起之前,箭头指向同一方向:

图9 :更复杂的粘合图

上图粘合图中的第一步是拉伸正方形,使两条蓝线相交,然后我们构造一个圆柱体,就像构建甜甜圈的第一步一样。甜甜圈粘合的红色箭头指向相同的方向,而现在,这两个红色箭头则指向相反的方向。这意味着我们必须以某种方式扭转圆柱体的一端,以使箭头在将它们胶合在一起之前指向相同的方向。你可能会想到,这在物理上是不可能的。因此,由该粘合图产生的表面在物理上也是不可能的。但是实际上,这是我们已经见过的物理上不可能的表面,克莱因瓶!

拓扑到底是什么

Source:Fouriest Serieson tumblr

粘合图是查看对象是否可定向的简单方法。我们可以想象在粘合图上行走与在“吃豆人”中的原理类似,当吃豆人到达世界的一侧时,它可以从另一侧出来。如果我们想象吃豆人在粘合图上移动,当它进入一侧时,它将从同一颜色的另一侧冒出来,而箭头确定了它前进的方向。

假设吃豆人进入圆环粘合图的右侧,那么它将从左侧出现。这就是正常“吃豆人”世界的拓扑工作方式。

拓扑到底是什么

图10:吃豆人在圆环上行走

现在假设吃豆人进入了克莱因瓶粘合图的右侧,然后,吃豆人将在左侧出现,但上下颠倒了:

拓扑到底是什么

图11:吃豆人在克莱恩瓶上行走

由以上分析可知: 粘合图能使我们轻松考虑对象的某些拓扑属性,如果没有粘合图,这些属性将难以理解和利用。

拓扑为什么有用?

实际上,拓扑在统计领域中非常有用。统计学中一个新兴的研究领域是拓扑数据分析。有用的数据通常具有某种结构,这些结构具有某种规律或趋势,而数据分析本质上是揭示此结构的过程。在数据中寻找结构通常取决于我们如何看待数据,即:使用什么统计检验,将哪些变量与其他变量进行比较以及使用哪些可视化表示。

从拓扑结构中,我们知道看起来完全不同的事物实际上可以具有相同的结构。这个想法也可以应用于数据,因为即使在处理相同的数据,若看待数据的角度不同,它们看起来也可能完全不同。

在拓扑数据分析中,数据的结构将会进行拓扑处理。我们知道,拓扑属性是在不改变其拓扑性质的变换过程中保持不变的属性。因此,在对数据进行拓扑数据分析时,我们主要寻找在经过各种处理方式之后保持不变的属性,这个过程可以类比于像拉伸橡皮泥一样拉伸数据。通过这种方式,我们可以确定数据的真实结构,并且不再依赖数据的观察方式。

这只是所谓的“现实世界”中许多拓扑应用之一。其他拓扑应用程序还涉及看起来不同的事物实际上是否是相同的问题,这个问题在处理经由不同的人、不同方式表述的同样的信息中非常重要。具有不同的表示方式的几种情况有:分子结构、地理图、DNA结构和绳结等等。

虽然最初可能很难看清,但是拓扑是大多数数学领域的基础。确切定义拓扑的“使用方式”非常困难,因为它的存在在数学的工作方式中根深蒂固,以至于我们甚至都没有注意到我们正在使用它。直到最近,拓扑学才成为独立于其他数学领域的学科,不断涌现出新的研究成果和应用。

作者:Luke Cooper

翻译:Nuor

审校:xux

原文链接:

‍https://medium.com/cantors-paradise/what-is-topology-963ef4cc6365

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。

来源: 中科院高能所



Tags:拓扑   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
前言拓扑图就是网络结构图,拓扑图的作用是可以更直观明了地看清楚网络中各个节点之间的链接,还有接口之间的链接,方便配置和排除错误。接下来一起来看一下各类网络监控拓扑图...【详细内容】
2021-03-12  Tags: 拓扑  点击:(318)  评论:(0)  加入收藏
在日常项目建设和实施过程中,经常会遇到类似数据可视化的实现场景。对于数据可视化已经从简单的统计图表展现,扩展到类似监控大屏,拓扑图,流程编排图,集成架构图等方面的呈现。...【详细内容】
2020-10-14  Tags: 拓扑  点击:(219)  评论:(0)  加入收藏
科学无国界我们是知识的搬运工“橡皮泥几何”入门我在大学学习拓扑时,总是不可避免地会遇到朋友和亲戚们的提问:“拓扑到底是什么?”这个问题很难回答,每次我都会给出略有不同的...【详细内容】
2020-09-16  Tags: 拓扑  点击:(74)  评论:(0)  加入收藏
拓扑图又称拓扑结构图,是指由计算机、打印机、网络设备以及其他设备构成的网络结构图。通俗来讲,就是将实物连接用图形呈现出来。其很大程度影响网络如何工作的。拓扑图常见的...【详细内容】
2020-08-04  Tags: 拓扑  点击:(155)  评论:(0)  加入收藏
不管是现在还是未来,耳机一直以来都是高科技的产物,和平年代它可以供人们欣赏音乐,而未来的战争时代,耳机又能担负着通讯的作用。譬如近期在bilibili独家播出的动漫《灵笼》描写...【详细内容】
2020-06-28  Tags: 拓扑  点击:(98)  评论:(0)  加入收藏
组网拓扑 组网相关及分值1、在10.0.0.0/24内自行规划互联和回环IP地址,其中互联地址掩码30位,环回地址掩码32位并指定router ID(27分);2、PC1-PC3属于不同VLAN,vlan号可自行确定;A...【详细内容】
2020-05-16  Tags: 拓扑  点击:(197)  评论:(0)  加入收藏
(一)二级等保(基础版)规划设计NGFW【必配】:融合传统防火墙安全策略、入侵防御、防病毒功能、VPN功能。解决安全区域边界、通信网络加密传输要求 【主机杀毒软件】【必配】:解决安...【详细内容】
2020-04-28  Tags: 拓扑  点击:(2338)  评论:(0)  加入收藏
网络拓扑设计分为单核心和双核心两种。01单核心网络拓扑设计 (上图中写的是路由器连接外网,也可以连接公司别的分支机构,下同) 单核心网络是指在整个网络环境中,只有一台核心交换...【详细内容】
2019-11-18  Tags: 拓扑  点击:(166)  评论:(0)  加入收藏
一、网络安全结构安全:关键节点采用冗余设备、冗余链路设计,功能区块隔离访问控制:网络边界部署防火墙安全审计:部署网络审计设备网络入侵防范:部署入侵检测系统恶意代码防范:部署...【详细内容】
2019-10-28  Tags: 拓扑  点击:(461)  评论:(0)  加入收藏
冒泡排序(Bubble Sort),又被称为气泡排序或泡沫排序。它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者...【详细内容】
2019-08-27  Tags: 拓扑  点击:(176)  评论:(0)  加入收藏
▌简易百科推荐
在海洋、陆地、天空三片领域中,都有处在食物链顶端的王者,它们站在食物链顶端,拥有王者的身份,如海洋霸主虎鲸是毫无争议的海洋王者,在海洋中,基本上是所向披靡,没有天敌,而草原王者...【详细内容】
2021-12-17  小楠动物世界    Tags:   点击:(7)  评论:(0)  加入收藏
氦元素在全宇宙的质量中大约占了24%,但是在地球大气中的浓度为5.2 ppm(1ppm=0.0001%)[1],因此称它为稀有气体。稀有气体也被称为惰性气体,化学反应上的惰性也是造成氦气在地球上含...【详细内容】
2021-12-15  中科院物理所    Tags:稀有气体   点击:(8)  评论:(0)  加入收藏
在管理工作中,有些传统的做法是错误的,我们要避免犯这些错误。以下这11条,都是错的。 01 . 拒绝承担个人责任有一次,有一项工作出了差错,董事长把我叫去骂了一顿。我对董事长说,“...【详细内容】
2021-12-14  股权设计布局    Tags:管理   点击:(5)  评论:(0)  加入收藏
对光的研究起源于古希腊,在那里,哲学家们开始思考视觉是如何工作的。柏拉图和毕达哥拉斯等思想家认为,我们的眼睛会发出微弱的光线进行探测。这些光线将收集我们周围物体的信息...【详细内容】
2021-12-08    中科院物理所  Tags:   点击:(12)  评论:(0)  加入收藏
据阿根廷布宜诺斯艾利斯经济新闻网12月6日报道,进食后感到困倦或疲惫是很常见的。这可以解释为,在那一刻,身体所有的能量都“投入”在消化过程中,短时间内感到有点昏昏欲睡非常...【详细内容】
2021-12-08    参考消息  Tags:犯困   点击:(7)  评论:(0)  加入收藏
量子力学能用来干什么?更该问的是它不能干什么!在知道了量子力学这个学科后,许多人就会来问:它能用来干什么?实际上,这个问题问偏了。真正有意义的问题是:量子力学不能用来干什么?因...【详细内容】
2021-12-07  中科院物理所    Tags:量子力学   点击:(14)  评论:(0)  加入收藏
电流是什么?首先回想下,我们学过的电流的定义是什么?很简单,导体中的带电粒子的定向运动就是电流。只有当物质内具有能自由移动的带电粒子,它才可以传输电流——即导电...【详细内容】
2021-12-07    中科院物理所  Tags:电流   点击:(22)  评论:(0)  加入收藏
要理解光速不变原理。首先要有抛弃固有的思维模式的思想准备,否则不容易理解。因为爱因斯坦这个理论有点离经叛道。 我们都知道,描叙一个运动,必须有参考系才有意义。说一列火...【详细内容】
2021-11-30  宇宙探索    Tags:光速不变   点击:(18)  评论:(0)  加入收藏
一半是彻夜无眠,而床上的另一半是呼噜声连绵不绝。这个场景恐怕是很多家庭的真实写照了吧。更让人崩溃的是,推一下不打了,下一秒又开始了“呼~~~呼~~呼”。给我闭嘴!!!那为什么“...【详细内容】
2021-11-17    科普中国  Tags:打呼噜   点击:(21)  评论:(0)  加入收藏
光合作用是指绿色植物的叶片吸收和利用太阳光能将植物吸收的,二氧化碳和水综合成富含能量的有机物,并释放出氧气的过程,这也是大搞植树造林能改变气候环境的原因之一,光合作用的...【详细内容】
2021-11-17  农业百晓生    Tags:光合作用   点击:(22)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条