您当前的位置:首页 > 生活百科 > 科学

神奇的量子加密技术

时间:2021-10-29 12:27:13  来源:  作者:中科院物理所

引子

迄今为止,人类历史上发生了三次工业革命。第一次工业革命开始于蒸汽机的发明。其核心是将化学能(煤炭)转化为机械能(蒸汽机),人们不再仅仅依赖畜力、水力和风力。

神奇的量子加密技术

蒸汽机车是蒸汽车的加强版

 

第二次工业革命则发端于人们对于电力的深度利用。人们发明发电机,电线和电报,这一切都让能量和信号的传递变得更加便捷。另外,更加高效的内燃机也开始替代第一次工业革命中的蒸汽机。

神奇的量子加密技术

 

第三次工业标志着数字化时代的开启,人类初步脱离具体的物理媒介的束缚。这时候,照片变成一堆可以传送的数字,而不再是一张张具体的胶卷。

神奇的量子加密技术

 

由此可见,每次工业革命都会对我们的生活方式都会产生根深蒂固的影响。我们自然会问,下一次工业革命会是在什么地方开启呢?这点很难预料。也许是人工智能,也许是量子技术,也许是生命科学,又也许在几十年以后的人们看来,我们现在正处于第四次工业革命的风口浪尖。

无论如何,在之前的三次工业革命当中,人类对世界的操控变得越来越精细 —— 从一颗螺丝钉到芯片上纳米尺度的晶圆颗粒,科技从宏观迈向微观的步伐令人叹为观止。如果人们对世界的控制突破纳米的限制进入更加微小的尺度,那时候,人们面对的又将是一个全新的世界,而那个世界的法律是量子力学(quantum mechanics)。量子技术正是设想在量子力学上的全新技术。也因此,量子技术很有可能打开下一次工业革命大门的钥匙。

什么是量子比特?

量子世界和宏观世界有着诸多的不同,其中一个便是,量子是可以叠加的。什么意思呢?在经典世界里,一个人只能在办公室里上班,或者在家里休息。而在量子世界里,人们可以处于办公室上班和家里休息的叠加状态。当老板打电话询问你是否在上班时,你告诉以一定概率告诉他是或者不是。

神奇的量子加密技术

薛定谔的猫:在量子世界里,猫可以同时处于死亡和活着两种状态!图片来自网络

 

这时候你可能觉得量子世界和经典世界并没有什么区别,老板总是随机地得到两个不同的答案。这时我们让老板换一个问题,让他询问你是否处于工作和休息的叠加态A上。在经典世界里,除非你有精神分裂症,否则难以问出这个问题。而在量子世界里,这却成为一种可能。你可以回答他是或者不是。

现在我们用更精确的数学语言来陈述。我们用 0 表示工作,1 表示休息。有信息学基础的读者都知道,经典的信息状态(比特,bit)只能是 0 或者 1,所以我们能够轻易地测量经典比特的取值。而量子比特(qubit,为了醒目,下文都用 qubit) [1] 可以是介于 0 和 1 之间的多种选择,qubit 的每一个状态都可以表示成一个单位向量:

 

神奇的量子加密技术

在量子世界中,老板的询问则意味着对经典(或量子)比特进行检查(或测量),通常通过 “神奇的量子加密技术” 作用在 “神奇的量子加密技术” 上表示测量的过程。在量子世界中,老板可以选择不同的问题提问(例如“你是否80%概率在休息20%概率在工作”或“你是否99%概率在休息”这种在经典世界看来很奇葩的问题),这意味着他可以选择不同的基矢进行测量,这在数学上通常用一组正交基表示。是否上班对应一组基矢神奇的量子加密技术,是否在叠加态 A 又是另外一组基矢,神奇的量子加密技术

神奇的量子加密技术

经典比特只有两个取值,量子比特则可以在整个三维球面上取值——小编注

 

当我们选择神奇的量子加密技术基矢进行测量时,我们得到 0 的概率是神奇的量子加密技术,而得到1的概率则是神奇的量子加密技术(计算过程本质上就是计算向量内积)。而当我们选择神奇的量子加密技术作为基矢的时候,我们得到的答案总是肯定的,因为神奇的量子加密技术

讲到这里,我们仍旧忽略了一件非常重要的事情——测量会对 qubit 的状态造成影响,这个过程被称为塌缩(Collapse)。例如,我们选择基矢神奇的量子加密技术对 qubit 进行测量,如果测量结果是 0,那么这个 qubit 就变成神奇的量子加密技术。类似的,如果我们选择基矢神奇的量子加密技术进行测量,测量结果为 A 意味者这个 qubit 塌缩到神奇的量子加密技术, 而结果 B 则意味者 qubit 塌缩到神奇的量子加密技术上。

现在让我们利用量子塌缩来做一个侦测器。假设我们要出门旅行,所以在房间里放了一个qubit神奇的量子加密技术。如果有小偷进入这个房间,这个 qubit 就会在神奇的量子加密技术基矢上进行测量。那么这个 qubit 就会变成神奇的量子加密技术或者神奇的量子加密技术。不管测量结果是神奇的量子加密技术还是神奇的量子加密技术, 这时候我们再次对 qubit 在老基底神奇的量子加密技术上进行测量,它都有一定概率输出1。所以等我们回来以后,我们就对 qubit 在老基底神奇的量子加密技术上进行测量,如果测量结果是 0,那么我们认为没有小偷;如果测量结果是 1,那么我们认为有家里被小偷光顾过了。

有的读者可能会怀疑这个方案的可行性,因为无论有没有小偷光顾,都有一定概率输出 0,所以我们还是有一定概率误认为小偷没有来过。这个时候我们把装置改进一下 —— 我们放很多个 qubit,在旅游归来之后,对所有 qubit 都进行上述测量。如果有一个qubit输出1,那么我们就认为小偷来过了。因为我们有很多个 qubit,所以误认为小偷没有来过的概率低到可以忽略。

这个量子探测器乍看起来似乎有些鸡肋,因为我们需要投入很多 qubit。不过事实上整个过程却隐含着量子密钥分发方案 BB84 的核心。

神奇的量子加密技术

现在读者们已经对是 qubit 有了一个初步的映像,接下来我们介绍量子加密技术。

在双方通信的过程中,总难免会有第三方想去窃取通信过程中的信息,而加密技术的出现就是为了防止信息被窃取。加密(encryption)的含义是把我们希望传送的信息,称为明文,通过某种算法(称为加密算法)把明文变成一串只有接收方才能理解的信息,这个信息称为密文。

神奇的量子加密技术

加密过程

 

这个世界上的加密方式有很多,他们的安全等级也不一样。很多密码都是有条件安全的,比如假设第三方只拥有有限的计算能力。我们知道的大规模商用的 RSA 密码是这样的一种安全级别。这种加密算法的安全核心在于,基于大素数分解的数学问题是困难的,目前没有行之有效的算法(更专业地讲,所有算法都是指数时间的——小编注)。要想攻破这个密码,就必须攻克这个长久以来困扰数学家的素数分解问题。

然而遗憾(对于不法之徒而言,幸运)的是,量子计算机可以有效地解决素数分解问题,这也意味着 RSA 密码体系在量子计算机面前并不安全。更高一个级别的安全性是无条件安全,也就是说,就算拥有无穷的计算能力也无法攻破这个密码体系。

读者们可能怀疑如此梦幻的加密体系也许真如黄粱一梦,根本不存在。事实上早在上个世纪初,人们就提出了一次一密算法(One-time pad),并且证明了他是无条件安全的。不过看似如此梦幻的算法却没有被普及开来,因为它有一个严重的缺陷。经典的加密方式要求通信双方在通信之前共享一串和明文是等长的比特串,通常被称为密钥。密钥就像是一把钥匙,在加密的过程中,我们就好比把明文塞进了一个保险盒,然后用密钥把它锁上。接下来我们把盒子送到接收方手里(可以大摇大摆地送过去),并用自己手里的密钥打开盒子,取出想要的信息。一次一密算法要求密钥和明文的长度相同,这就让这个加密过程变得极其昂贵,难以被商业化。

神奇的量子加密技术

一次一密算法要求密文和明文长度相同

量子加密技术的创新点在于密钥分发技术( Key distribution),它很好地解决了一次一密算法中密钥生成的难题。此外,物理学家和数学家证明这个分发密钥的过程在理论上是无条件安全的(据笔者所知,这应该是唯一一个在理论上被证明无条件安全的密钥分发方案。)。

为了让读者更好地理解量子加密技术,我们介绍 BB84 方案 [2],它是由 Bennet 和 Brassard 等人在1984年提出的。BB84 方案的一大优点是它不需要量子纠缠,因为量子纠缠是一种比较昂贵的资源。潘建伟院士在 2017 年用墨子号卫星实行洲际间的量子密钥分发方案也正是 BB84 方案 [3]。

BB84 方案的具体的过程可以从下面这幅图里看到:

神奇的量子加密技术

就好比光的偏振一样,量子密钥图片来自维基百科

上面的箭头只是用以类比光的偏振方向,并没有严格的定义。对于这幅图的解释如下(Alice 和 Bob 是信息学领域的常见虚构人物):

算法—— BB84 量子加密方案

 

  1. 神奇的量子加密技术神奇的量子加密技术

    神奇的量子加密技术神奇的量子加密技术神奇的量子加密技术神奇的量子加密技术神奇的量子加密技术神奇的量子加密技术

    神奇的量子加密技术

  2. 神奇的量子加密技术神奇的量子加密技术得到测量结果 →, 这就代表经典的比特 1。

  3.  
  4.  

 

科学家们仍在努力提高密钥分发的速度同时希望降低分发过程的成本。目前来说,量子密钥是为数不多的几个的开始商业化的量子技术之一。

对量子技术的思考

人们会对量子技术有各种各样的批评。其中一些人为量子密钥分发是不必要的,因为量子计算机还没有被造出来。退一步说,即使有了量子计算机,人们仍旧可以使用相对应的经典密码去对抗量子计算机。

笔者本人不太赞同这些观点。首先,我们不可能等到量子计算机造出来后才开始研究量子密码;即使我们可以使用更加高级的经典密码去对抗量子计算机,量子密钥也未必没有优势,毕竟用高级的经典密码会消耗更多计算资源也会抬升加密的成本。如果量子密钥的成本比高级经典密码低,那么量子密钥将存在很大的商业前景。

无论如何,量子技术的发展可以看成是人们希望理解和操控微观世界的一种尝试。而量子密钥分发是我们现阶段能想到的一个应用方案。不管量子密钥分发最后能否带来巨大的商业价值,它总是人们迈开利用量子技术的重要一步。

参考文献

 

[1] M. A. Nielsen and I. L. Chuang,(2007).

[2] C. H. Bennett and G. Brassard, Proc.1984 IEEE Int. Conf. Comput. Syst. Signal Process. 175 (1984).

[3] S. K. Liao, W. Q. Cai, J. Handsteiner,B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J. G. Ren, W. Y. Liu, Y. Li, Q.Shen, Y. Cao, F. Z. Li, J. F. Wang, Y. M. Huang, L. Deng, T. Xi, L. Ma, T. Hu,L. Li, N. Le Liu, F. Koidl, P. Wang, Y. A. Chen, X. Bin Wang, M. Steindorfer,G. Kirchner, C. Y. Lu, R. Shu, R. Ursin, T. Scheidl, C. Z. Peng, J. Y. Wang, A.Zeilinger, and J. W. Pan, Phys. Rev. Lett. 120, 30501 (2018).

 

 

 

来源:科普最前线

编辑:Paarthurnax



Tags:量子   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
量子力学能用来干什么?更该问的是它不能干什么!在知道了量子力学这个学科后,许多人就会来问:它能用来干什么?实际上,这个问题问偏了。真正有意义的问题是:量子力学不能用来干什么?因...【详细内容】
2021-12-07  Tags: 量子  点击:(14)  评论:(0)  加入收藏
引子迄今为止,人类历史上发生了三次工业革命。第一次工业革命开始于蒸汽机的发明。其核心是将化学能(煤炭)转化为机械能(蒸汽机),人们不再仅仅依赖畜力、水力和风力。蒸汽机车是蒸...【详细内容】
2021-10-29  Tags: 量子  点击:(51)  评论:(0)  加入收藏
量子计算机将在新药研发和密码破解等各方面超越传统计算机,对产业界和国家安全战略产生巨大影响,引发各国政府高度关注,美国、中国和日本等国都开始发力。 三国逐鹿量子计算机研制领域,谁领风骚?...【详细内容】
2021-07-21  Tags: 量子  点击:(78)  评论:(0)  加入收藏
天闻频道长久以来,人们都无法确定虫洞是否真实存在。不过近几年的一些研究表明,虫洞确实是可能存在的。而且,利用物理学理论便可以构造出微型虫洞。在黑洞一词还未诞生之时,物理...【详细内容】
2021-06-02  Tags: 量子  点击:(118)  评论:(0)  加入收藏
视觉中国供图我们瞄准特定应用研制了一款新型的可编程光量子计算芯片,能够进行量子漫步可编程动态模拟,从而支持实现图论问题量子算法,未来可能应用在数据库搜索、模式识别等领...【详细内容】
2021-05-18  Tags: 量子  点击:(165)  评论:(0)  加入收藏
科技日报记者 张佳星水,可以称得上是最简单的分子,H₂O。这个简单的化学式,在搞物理的人眼里却蕴含着太多的谜题。为什么热水可以比冷水更快结成冰?为什么4摄氏度水的密度是最大...【详细内容】
2021-05-10  Tags: 量子  点击:(138)  评论:(0)  加入收藏
你好哇,感谢你点击我的文章,这里是后浪科普,一个什么都懂一点的账号,如果你也对世界充满好奇心,可以关注我,让我们一起成长。先声明下,今天的文章很难懂,我光资料就准备了两天,加上我...【详细内容】
2021-03-31  Tags: 量子  点击:(118)  评论:(0)  加入收藏
编者按中央经济工作会议指出:科技自立自强是促进发展大局的根本支撑,只要秉持科学精神、把握科学规律、大力推动自主创新,就一定能够把国家发展建立在更加安全、更为可靠的基础...【详细内容】
2021-02-24  Tags: 量子  点击:(106)  评论:(0)  加入收藏
在日前举办的2020天翼智能生态博览会上,中国电信展出了两台量子通信手机样品。该机型由中国电信与国盾量子根据现有品牌手机改造,预计在今年年底或明年年初将推向民用市场。什...【详细内容】
2020-12-18  Tags: 量子  点击:(113)  评论:(0)  加入收藏
量子计算机刷屏全网网友们都为之骄傲欣喜但一打开文章大部分朋友看完都只能留下一地问号:“每个字我都认识但……”“量子计算机为啥这么快?”别担心!这里有一份“...【详细内容】
2020-12-07  Tags: 量子  点击:(153)  评论:(0)  加入收藏
▌简易百科推荐
在海洋、陆地、天空三片领域中,都有处在食物链顶端的王者,它们站在食物链顶端,拥有王者的身份,如海洋霸主虎鲸是毫无争议的海洋王者,在海洋中,基本上是所向披靡,没有天敌,而草原王者...【详细内容】
2021-12-17  小楠动物世界    Tags:   点击:(7)  评论:(0)  加入收藏
氦元素在全宇宙的质量中大约占了24%,但是在地球大气中的浓度为5.2 ppm(1ppm=0.0001%)[1],因此称它为稀有气体。稀有气体也被称为惰性气体,化学反应上的惰性也是造成氦气在地球上含...【详细内容】
2021-12-15  中科院物理所    Tags:稀有气体   点击:(8)  评论:(0)  加入收藏
在管理工作中,有些传统的做法是错误的,我们要避免犯这些错误。以下这11条,都是错的。 01 . 拒绝承担个人责任有一次,有一项工作出了差错,董事长把我叫去骂了一顿。我对董事长说,“...【详细内容】
2021-12-14  股权设计布局    Tags:管理   点击:(5)  评论:(0)  加入收藏
对光的研究起源于古希腊,在那里,哲学家们开始思考视觉是如何工作的。柏拉图和毕达哥拉斯等思想家认为,我们的眼睛会发出微弱的光线进行探测。这些光线将收集我们周围物体的信息...【详细内容】
2021-12-08    中科院物理所  Tags:   点击:(12)  评论:(0)  加入收藏
据阿根廷布宜诺斯艾利斯经济新闻网12月6日报道,进食后感到困倦或疲惫是很常见的。这可以解释为,在那一刻,身体所有的能量都“投入”在消化过程中,短时间内感到有点昏昏欲睡非常...【详细内容】
2021-12-08    参考消息  Tags:犯困   点击:(7)  评论:(0)  加入收藏
量子力学能用来干什么?更该问的是它不能干什么!在知道了量子力学这个学科后,许多人就会来问:它能用来干什么?实际上,这个问题问偏了。真正有意义的问题是:量子力学不能用来干什么?因...【详细内容】
2021-12-07  中科院物理所    Tags:量子力学   点击:(14)  评论:(0)  加入收藏
电流是什么?首先回想下,我们学过的电流的定义是什么?很简单,导体中的带电粒子的定向运动就是电流。只有当物质内具有能自由移动的带电粒子,它才可以传输电流——即导电...【详细内容】
2021-12-07    中科院物理所  Tags:电流   点击:(22)  评论:(0)  加入收藏
要理解光速不变原理。首先要有抛弃固有的思维模式的思想准备,否则不容易理解。因为爱因斯坦这个理论有点离经叛道。 我们都知道,描叙一个运动,必须有参考系才有意义。说一列火...【详细内容】
2021-11-30  宇宙探索    Tags:光速不变   点击:(18)  评论:(0)  加入收藏
一半是彻夜无眠,而床上的另一半是呼噜声连绵不绝。这个场景恐怕是很多家庭的真实写照了吧。更让人崩溃的是,推一下不打了,下一秒又开始了“呼~~~呼~~呼”。给我闭嘴!!!那为什么“...【详细内容】
2021-11-17    科普中国  Tags:打呼噜   点击:(21)  评论:(0)  加入收藏
光合作用是指绿色植物的叶片吸收和利用太阳光能将植物吸收的,二氧化碳和水综合成富含能量的有机物,并释放出氧气的过程,这也是大搞植树造林能改变气候环境的原因之一,光合作用的...【详细内容】
2021-11-17  农业百晓生    Tags:光合作用   点击:(22)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条