您当前的位置:首页 > 生活百科 > 科学

Nature:发现人脑运动协调新区域,人类认知再次被刷新

时间:2023-06-19 14:10:05  来源:钛媒体APP  作者:

图片来源@视觉中国

文 | 追问NextQuestion,作者 | 韵珂,译者 | 刘风临

大脑的“运动侏儒”理论

约一个世纪前,神经外科医生通过对开颅患者直接进行脑表面的电刺激,首次发现了躯体运动代表区。在大脑表面,第一躯体运动区是位于中央前回(Precentral gyrus,PCG)后面凸的大脑皮质区域,按照从内到外、从上到下的顺序分别投射支配下肢、上肢和头面部的运动。1937年,William Penfield教授用经典的“运动侏儒(Motor homunculus)”模式图来描述大脑皮层的这种投射支配模式[1]。后来,“运动侏儒”模式也陆续得到了多项基于功能磁共振成像(fMRI)、脑磁图(MEG)、脑皮层电图(ECoG)等方法进行的研究所证实。

Gerwin Schalk博士是运动控制神经基础与脑-机接口(BCI)领域的知名科学家,也是天桥脑科学研究院(Tianqiao and Chrissy Chen Institute,TCCI)应用神经技术前沿实验室主任。他表示:“不断发展的神经科学向我们清晰地展示了大脑皮层这张复杂而精细的地图,在中央前回处,不同区域对应躯体的不同部位,并投射支配该区域的自主活动。”

图注:“感觉侏儒”(左)与“运动侏儒”(右) 图片来源:https://www.ebmconsult.com/

但“运动侏儒”理论仅仅解释了运动的产生,却没有进一步解释运动的协调机制。鉴于此,Pandya等[2]于1982年提出了运动联合区域(motor association area)概念,认为运动联合区域并不直接参与投射支配躯体运动,而是通过协调联系各运动皮层区,从而实现更加复杂的运动调控。

发现新脑区:中央沟深部的运动联合区域

为了更深刻地理解中央前回的结构与功能,Gerwin Schalk博士与梅奥诊所(Mayo Clinic)的学者Michael A. Jensen等众多专家共同开展了一项基于立体脑电图(stereoelectroencephalography,sEEG)的研究。该研究成果于2023年5月发表在著名期刊Nature Neuroscience上。[3]

研究发现,大脑的皮层地图并不完全像先前大家所描述的那样,大脑中其实还存在着另一个全新的脑区——罗朗多氏运动联合区域(Rolandic motor association area,RMA),这个区域同样控制和协调着我们的运动功能!

研究一出,在科学界内掀起了不小的轰动。

文章报道封面 图片来源:https://www.nature.com/articles/s41593-023-01346-z

本次研究共招募了13名年龄在11-20岁之间的药物难治性局灶性癫痫患者(其中有6名女性)。研究人员向患者脑内植入立体脑电图深部电极,随后指导患者根据随机抽取的图案提示,以约1次/秒的节律分别完成以下简单的自主运动:单手握紧/松开、闭嘴时舌头左移/右移、单足跖屈/背伸。在此期间,研究者会采集电极周围脑组织的神经电活动信号,计算其功率谱密度(power spectral density),并进行时间进程分析(time course analysis)。研究人员同时在前臂伸/屈肌、下颌底部、胫前肌处放置肌电电极,以评价从大脑皮层运动区放电到肢体活动间的间隔时间。研究原计划是同时记录脑表面及深部的电信号,并采用K均值聚类算法(K-means clustering algorithm)计算手、舌、脚分别活动时被激活的区域/簇在脑中的相对空间位置,从而从三维容积角度阐释支配运动过程中第一躯体运动区的脑电活动特征。

图c展示了利用K均值聚类算法计算患者活动手、舌、脚时所采集脑电数据的结果。所有数据分为5个簇,以不同颜色标记并在三维坐标系中展示。图d则展示了各簇在脑内的空间位置分布。图片来源:Jensen, et al./ Nature Neuroscience 2023

在对受试者宽频脑电图结果进行分析后发现,第一躯体运动区实际上比经典“运动侏儒”模式图描述的范围要更大,其中,部分运动代表区延伸入中央沟内。更令人惊讶的是,在所有患者按照指令活动手、舌、脚的过程中,立体脑电图显示,位于中央沟深部中外侧部的一处全新的脑区均被激活,这与周围特化的躯体运动代表区的电生理活动模式(特定脑区激活对应特定躯体部位自主活动)有着显著区别。

研究者借鉴“罗朗多氏裂(Fissure of Rolando)”这一中央沟的旧称,将这个脑区命名为“罗朗多氏运动联合区域(Rolandic motor association area,RMA)”。

据Schalk博士介绍,这个区域的出现打断了中央前回“运动侏儒”地图的连续性。他们所观察到患者在完成不同指令过程时RMA均被激活,这说明RMA支配运动不具有特异性,其并不通过神经纤维直接投射支配某一部位的运动,而是参与运动的协调

发现新的脑区,有什么意义?

随着立体脑电图技术在临床上的普及,研究者们不断发现全新的、参与调节运动的运动联合区域。Glasser等[4]发现,位于RMA前上方的中央前回55b区参与生成语言与协调音律。而Willett等[5]指出,四肢瘫患者的运动前区(BA6区)参与整合全身的自主运动。Gordon等[6]则进一步提出,中央前回上存在三个未直接参与投射支配躯体运动的区域,这些区域其中之一与上述中央前回55b区相重叠,可能与纹状体、中央中核相联系,参与协调全身的自主运动。

谈到此次发现的意义,Schalk博士激动地表示:“在这基础上,发现RMA再次扩展了我们对人脑的认知。未来研究或可进一步探讨运动联合区域与第一躯体运动区、运动联合区域之间的相互联系,从而发现运动联合区域在神经环路中的更广泛作用。“

在发现RMA的过程中,先进的神经技术功不可没。作为一种日趋成熟的技术,立体脑电图能更好地从三维角度描述癫痫患者脑网络特征,有助于指导癫痫治疗。相较而言,传统的脑皮层电图与直接电刺激则很容易忽略RMA,这是因为,这些技术主要记录大脑浅表的神经电活动,而RMA位于中央沟深部,为BA4区所掩盖,其电活动相对不易被捕捉到。

正是立体脑电图的立体定位、能捕捉深部白质神经电活动的优势促成了新脑区的发现。在技术层面,Gerwin Schalk博士也对先进神经技术的应用充满期待,他表示“随着传感器技术的最新进步、计算能力的增强以及信号处理/AI算法的日益复杂,我们现在拥有强大的工具来更多地了解和修改大脑功能。”

目前,人们越来越深刻认识到神经技术的潜力,并开始通过系统的工作将神经科学发现与技术相结合,以开发使医疗与科研行业内外更多人受益的解决方案。“我们与梅奥诊所的这项研究有助于更好地利用这些工具来解决不同神经系统疾病的破坏性影响。例如,我们目前的发现可能会促成新的或改进的方法来改善不同运动障碍的治疗,如帕金森病或图雷特综合征。”他在采访中表示。

参考资料:

[1] Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

[2] Pandya, D. N. & Seltzer, B. Association areas of the cerebral cortex. Trends Neurosci. 5, 386–390 (1982).

[3] Jensen MA, Huang H, Valencia GO, et al. A motor association area in the depths of the central sulcus [published online ahead of print, 2023 May 18]. Nat Neurosci. 2023;10.1038/s41593-023-01346-z. doi:10.1038/s41593-023-01346-z

[4] Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

[5] Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409 (2020).

[6] Gordon, E. M. et al. A mind-body interface alternates with efector-specific regions in motor cortex. Preprint at bioRxiv https://doi.org/10.1101/2022.10.26.513940 (2022).

原文链接:

Jensen, M.A., Huang, H., Valencia, G.O. et al. A motor association area in the depths of the central sulcus. Nat Neurosci (2023). https://doi.org/10.1038/s41593-023-01346-z



Tags:人脑   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
芯片植入人脑待长期评估,马斯克脑机接口终极目标:人与AI共生
·伦敦国王学院植入式医疗设备教授认为,Neuralink在与参与者一起训练系统前,要给参与者时间恢复。真正的成功需要长期评估脑机接口的稳定性和对参与者的好处。·...【详细内容】
2024-02-01  Search: 人脑  点击:(86)  评论:(0)  加入收藏
用活人脑细胞造AI系统!语音识别已成功,可无监督学习
原创 | 量子位丰色 发自 凹非寺量子位 | 公众号 QbitAI 由真实人脑细胞构建的“迷你大脑”和微电极组成的AI系统,已经能够进行语音识别——从数百个声音片段中准确...【详细内容】
2023-12-13  Search: 人脑  点击:(152)  评论:(0)  加入收藏
AI越来越像人脑?神经科学家们有话要说……
为了让AI更像人脑,科学家搞起了AI 。最近,AI行业有点热闹。一群技术大佬为了“AI是否安全”这个话题互相站队,差不多快分出两个派系。一派认为,AI会灭绝人类,而另一派则认为,加强...【详细内容】
2023-11-06  Search: 人脑  点击:(243)  评论:(0)  加入收藏
Nature:发现人脑运动协调新区域,人类认知再次被刷新
图片来源@视觉中国文 | 追问NextQuestion,作者 | 韵珂,译者 | 刘风临大脑的“运动侏儒”理论约一个世纪前,神经外科医生通过对开颅患者直接进行脑表面的电刺激,首次发现了躯体运...【详细内容】
2023-06-19  Search: 人脑  点击:(163)  评论:(0)  加入收藏
未来计算机在人脑细胞上运行?类器官智能,最前沿生物计算向我们走来|科技创新世界潮
实验室培养的大脑类器官的放大图像,具有针对不同细胞类型的荧光标记。(粉红色—神经元;红色—少突胶质细胞;绿色—星形胶质细胞;蓝色—所有细胞核)。图片来源...【详细内容】
2023-03-01  Search: 人脑  点击:(185)  评论:(0)  加入收藏
JS 中令人脑壳疼的 == 与 === 区别到底是什么?
曾经对我来说,等于就是等于,所以第一次接触到 JS 中的三等号时我感到很困惑。大部分编程语言中都有双等号"==",但没有三等号"==="。下面是一个比较官方的双等号与三等号的差...【详细内容】
2019-09-05  Search: 人脑  点击:(812)  评论:(0)  加入收藏
一文让你搞懂令人脑瓜疼的python编码问题
如果说在python2中处理字符编码很蛋疼的话,如果幻想着python3不那么蛋疼,那么我只想说,你想多了,好不容易在python2中把字符编码的问题捣腾清楚了,但是换成python3,它会将之前的...【详细内容】
2019-08-27  Search: 人脑  点击:(887)  评论:(0)  加入收藏
“七年之痒”居然是人脑中的时间线在作怪?
作者:袁越根据相对论,这个世界上除了光速之外没有什么东西是永恒不变的,就连时间也不例外。心理学家们肯定会认同这个说法,因为不同年龄的人对于时间的感知真的很不一样。比如小...【详细内容】
2019-05-09  Search: 人脑  点击:(1082)  评论:(0)  加入收藏
▌简易百科推荐
北斗系统早已全球开放,为何我国还在用GPS?真实原因令人无奈
我国科研团队,曾经用了整整10多年的时间,才打造开发出北斗卫星导航系统,这套系统已经全球开放,然而细心的网友会发现,北斗卫星系统,并没有成为我国唯一使用的导航系统,我国为什么还...【详细内容】
2024-04-10  科学知识点秀    Tags:北斗系统   点击:(3)  评论:(0)  加入收藏
北美地区等来天文“大片”,日全食“科研盛宴”即将开场
图片来源:物理学家组织网图为三枚位于NASA沃洛普斯飞行设施内的火箭。日全食期间,火箭将与科学仪器一起发射,研究地球电离层。图片来源:NASA官网北京时间4月9日,由太阳和月球联袂...【详细内容】
2024-04-08    新华社  Tags:日全食   点击:(4)  评论:(0)  加入收藏
今年全球唯一一次日全食要来了
今年备受瞩目的天象来了!全球唯一一次日全食将于北京时间4月9日凌晨上演,全食带扫过北美洲,墨西哥、美国和加拿大的众多城市都能看到这次日全食,发生时间为当地时间4月8日中午到...【详细内容】
2024-04-07    新华社  Tags:日全食   点击:(4)  评论:(0)  加入收藏
你在光速飞船上奔跑,速度超过光速了吗?
简单回答,没有超过光速。虽然答案很简单,但里面涉及到的东西很多,这里有必要进行详细分析。爱因斯坦的狭义相对论告诉我们,光速是宇宙最快的速度,任何物体的速度都不可能超过光速...【详细内容】
2024-03-27  宇宙怪谈    Tags:光速   点击:(19)  评论:(0)  加入收藏
地磁暴导致嗜睡?对生活有何影响?科普来了
据中国气象局消息,3月24日、25日和26日三天可能出现地磁活动。其中3月25日会发生中等以上地磁暴甚至大地磁暴,预计地磁活动将持续到26日。相关消息一经发布,关于“地磁暴”的话...【详细内容】
2024-03-27    澎湃新闻  Tags:地磁暴   点击:(15)  评论:(0)  加入收藏
量子力学,你了解多少?一起探索微观世界的奥秘!
量子力学,作为现代物理学的两大基石之一,自诞生以来就以其独特的视角和深刻的内涵,引领着科学家们探索微观世界的奥秘。它不仅是描述微观物质的基本理论,更是连接微观世界与宏观...【详细内容】
2024-03-08    简易百科  Tags:量子力学   点击:(19)  评论:(0)  加入收藏
面粉竟然会爆炸!事关粉尘爆炸,你应该知道
面粉竟然会爆炸!事关粉尘爆炸,你应该知道最近的热播剧《猎冰》中有这样一个片段毒贩黄宗伟拎着一袋面粉进了厨房随后把面粉倒进盆里镜头一转突然发生了爆炸而且威力看起来还不...【详细内容】
2024-03-06    北京日报客户端  Tags:粉尘爆炸   点击:(15)  评论:(0)  加入收藏
牛顿、爱因斯坦和钱学森,晚年为何研究虚无之物?难道神真存在?
随着人类技术的日新月异,人类也逐渐从过去传统的古老神话中清醒出来,知道了一个个奥秘,比如“地球是圆的,在围绕太阳运动”,再比如人和猴子,都有着同样的祖先。如今这些都是人们共...【详细内容】
2024-03-05  秋原历史    Tags:牛顿   点击:(15)  评论:(0)  加入收藏
揭开量子之谜:科学家首次获得真空衰变的实验证据
IT之家 1 月 25 日消息,由纽卡斯尔大学(Newcastle University)科学家参与的国际团队,近日在意大利完成实验,首次获得了真空衰变的实验证据。根据量子场论,一个不太稳定的状态转变...【详细内容】
2024-01-25  IT之家    Tags:量子   点击:(51)  评论:(0)  加入收藏
大质量原恒星团咋形成的?“绘”出来了
新华视点 | 作者 魏梦佳璀璨星空下,人类所看到的遥远星光,其实主要来自大质量恒星。这些体积庞大但数量稀少的恒星则诞生于大质量原恒星团。然而,这些庞然大物究竟如何形成的?图...【详细内容】
2024-01-16    新华视点  Tags:恒星团   点击:(55)  评论:(0)  加入收藏
站内最新
站内热门
站内头条