您当前的位置:首页 > 互联网百科 > 大数据

数据可视化实用教程

时间:2020-09-11 11:08:59  来源:  作者:
数据可视化实用教程

 

探索性数据分析(EDA)是数据科学或机器学习管道的重要组成部分。为了使用数据创建一个健壮且有价值的产品,你需要研究数据,理解变量之间的关系,以及数据的底层结构。数据可视化是EDA中最有效的工具之一。

在这篇文章中,我们将尝试使用可视化功能来研究客户流失数据集:https://www.kaggle.com/sonalidasgupta95/churn-prediction-of-bank-customers

我们将创建许多不同的可视化效果,并尝试在每一个可视化中引入Matplotlib或Seaborn库的一个特性。

我们首先导入相关库并将数据集读入pandas数据帧。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='darkgrid')
%matplotlib inlinedf = pd.read_csv("/content/Churn_Modelling.csv")
df.head()
数据可视化实用教程

 

该数据集包含10000个客户(即行)和14个关于银行客户及其产品的特征。这里的目标是使用所提供的特征来预测客户是否会流失(即退出=1)。

让我们从catplot开始,这是Seaborn库的一个分类图。

sns.catplot(x='Gender', y='Age', data=df, hue='Exited', height=8, aspect=1.2)
数据可视化实用教程

 

研究发现:45到60岁的人比其他年龄段的人更容易离职(即离开公司)。女性和男性之间没有太大的差别。

hue参数用于根据类别变量区分数据点。

下一个可视化是散点图,它显示了两个数值变量之间的关系。让我们看看客户的工资和余额是否相关。

plt.figure(figsize=(12,8))
plt.title("Estimated Salary vs Balance", fontsize=16)
sns.scatterplot(x='Balance', y='EstimatedSalary', data=df)
数据可视化实用教程

 

我们第一次使用matplotlib.pyplot接口来创建Figure对象并设置标题。然后,我们用Seaborn在这个图形对象上画出了实际的图表。

研究结果:估计工资与余额之间不存在有意义的关系或相关性。余额似乎具有正态分布(不包括余额为零的客户)。

下一个可视化是箱线图,它显示了一个变量在中位数和四分位数上的分布。

plt.figure(figsize=(12,8))
ax = sns.boxplot(x='Geography', y='Age', data=df)
ax.set_xlabel("Country", fontsize=16)
ax.set_ylabel("Age", fontsize=16)
数据可视化实用教程

 

我们还使用set_xlabel和set_ylabel调整了x和y轴的字体大小。

以下是箱线图:

数据可视化实用教程

 

中值是所有点排序时中间的点。Q1(第一个或下四分位数)是数据集下半部分的中值。Q3(第三或上四分位数)是数据集上半部分的中值。

因此,箱线图为我们提供了关于分布和异常值的概念。在我们创建的箱线图中,顶部有许多异常值(用点表示)。

发现:年龄变量的分布是右偏的。由于上侧的异常值,平均值大于中值。

在变量的单变量分布中可以观察到右偏态。让我们创建一个distplot来观察分布。

plt.figure(figsize=(12,8))
plt.title("Distribution of Age", fontsize=16)
sns.distplot(df['Age'], hist=False)
数据可视化实用教程

 

右边的尾巴比左边的重。原因是我们在箱线图上观察到的异常值。

distplot在默认情况下也提供了一个直方图,但是我们使用hist参数更改了它。

Seaborn库还提供了不同类型的pair图,这些图提供了变量之间成对关系的概述。让我们先从数据集中随机抽取一个样本,使曲线图更具吸引力。原始数据集有10000个观测值,我们将选取一个包含100个观测值和4个特征的样本。

subset=df[['CreditScore','Age','Balance','EstimatedSalary']].sample(n=100)
g = sns.pairplot(subset, height=2.5)
数据可视化实用教程

 

在对角线上,我们可以看到变量的直方图。网格的另一部分表示变量与变量之间的关系。

另一个观察成对关系的工具是热图,它采用矩阵并生成彩色编码图。热图主要用于检查特征和目标变量之间的相关性。

让我们首先使用pandas的corr函数创建一些特征的相关矩阵。

corr_matrix = df[['CreditScore','Age','Tenure','Balance',
'EstimatedSalary','Exited']].corr()

我们现在可以绘制这个矩阵。

plt.figure(figsize=(12,8))
sns.heatmap(corr_matrix, cmap='Blues_r', annot=True)
数据可视化实用教程

 

发现:“年龄”和“余额”列与客户流失呈正相关。


随着数据量的增加,分析和探索数据变得越来越困难。可视化是探索性数据分析中的一个重要工具,当它被有效和恰当地使用时,它就有了强大的力量。可视化也有助于向你的听众传达信息或告诉他们你的发现。

没有一种适合所有类型的可视化方法,因此某些任务需要不同类型的可视化。根据任务的不同,不同的选择可能更合适。所有可视化都有一个共同点,那就是它们是探索性数据分析和数据科学中讲故事部分的好工具。



Tags:数据可视化   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
今天详解一个 Python 库 Streamlit,它可以为机器学习和数据分析构建 web app。它的优势是入门容易、纯 Python 编码、开发效率高、UI精美。 上图是用 Streamlit 构建自动驾驶...【详细内容】
2021-12-09  Tags: 数据可视化  点击:(22)  评论:(0)  加入收藏
利用Python实现中国地铁数据可视化。废话不多说。让我们愉快地开始吧~开发工具Python版本:3.6.4相关模块:requests模块;wordcloud模块;pandas模块;numpy模块;jieba模块;pyecharts模...【详细内容】
2021-12-08  Tags: 数据可视化  点击:(34)  评论:(0)  加入收藏
今天再给大家分享一个不错的可视化大屏分析平台模板DataColour。 data-colour 可视化分析平台采用前后端分离模式,后端架构设计采用微服务架构模式。 前端技术:Angularjs、Jq...【详细内容】
2021-11-04  Tags: 数据可视化  点击:(39)  评论:(0)  加入收藏
数据可视化是处理数据的基本操作,如果想进一步从数据中获取更多信息,就要先将数据做可视化处理。有一些工具会帮助我们更好的呈现数据,优秀的数据可视化工具有如下:Google Chart...【详细内容】
2021-09-16  Tags: 数据可视化  点击:(61)  评论:(0)  加入收藏
01.什么是大数据?数据是对客观事实进行记录的一种符号,可以是数字、文字,也可以是图片、音频、视频。大数据是指无法在一定时间范围内用常规软件进行捕捉、管理和数据的数据集...【详细内容】
2021-06-25  Tags: 数据可视化  点击:(78)  评论:(0)  加入收藏
数据可视化用专业术语来就是通过视觉的方式向人类展示数据,这种在文本基础上的图表即简单又实用,而且相关性、趋势分析都非常明确,也非常可靠,通过图表一目了然。用通俗的话说就...【详细内容】
2021-06-11  Tags: 数据可视化  点击:(106)  评论:(0)  加入收藏
我是一名数据分析师,常常需要处理大量的数据,苦于找不到合适的工具,一直用的excel做数据分析,但是大家都知道,excel的可视化能力有限,一行行的黑白文字我看到两眼发黑,效率还很低,后...【详细内容】
2021-06-11  Tags: 数据可视化  点击:(106)  评论:(0)  加入收藏
Serial Studio是一个多平台,多用途的串行数据可视化程序。该项目的目标是使嵌入式开发人员和制造商可以轻松地可视化,呈现和分析其项目和设备生成的数据,而无需为每个项目编写...【详细内容】
2021-04-14  Tags: 数据可视化  点击:(644)  评论:(0)  加入收藏
你没看错,全部都是推荐指数五颗星的数据可视化工具,无门槛,不挑人,面向小白和非专业人员,人人可用,按自身适应度及喜好选择即可。 1 Excel惊艳到不认识的数据可视化工具!!这个我们已...【详细内容】
2021-01-27  Tags: 数据可视化  点击:(174)  评论:(0)  加入收藏
时间序列数据在许多不同的行业中都非常重要。它在研究、金融行业、制药、社交媒体、网络服务等领域尤为重要。对时间序列数据的分析也变得越来越重要。在分析中有什么比一...【详细内容】
2020-11-20  Tags: 数据可视化  点击:(68)  评论:(0)  加入收藏
▌简易百科推荐
张欣安科瑞电气股份有限公司 上海嘉定 201801 摘要:随着电力行业各系统接入,海量数据涌现,如何利用电网信息化中大量数据,对客户需求进行判断分析,服务于营销链条,提升企业市场竞...【详细内容】
2021-12-14  安科瑞张欣    Tags:大数据   点击:(9)  评论:(0)  加入收藏
1、什么是数据分析结合分析工具,运用数据分析思维,分析庞杂数据信息,为业务赋能。 2、数据分析师工作的核心流程:(1)界定问题:明确具体问题是什么;●what 发生了什么(是什么)●why 为...【详细内容】
2021-12-01  逆风北极光    Tags:大数据   点击:(25)  评论:(0)  加入收藏
在实际工作中,我们经常需要整理各个业务部门发来的数据。不仅分散,而且数据量大、格式多。单是从不同地方汇总整理这些原始数据就花了大量的时间,更不用说还要把有效的数据收集...【详细内容】
2021-11-30  百数    Tags:数据   点击:(21)  评论:(0)  加入收藏
数据作为新的生产要素,其蕴含的价值日益凸显,而安全问题却愈发突出。密码技术,是实现数据安全最经济、最有效、最可靠的手段,对数据进行加密,并结合有效的密钥保护手段,可在开放环...【详细内容】
2021-11-26  炼石网络    Tags:数据存储   点击:(17)  评论:(0)  加入收藏
导读:网易大数据平台的底层数据查询引擎,选用了Impala作为OLAP查询引擎,不但支撑了网易大数据的交互式查询与自助分析,还为外部客户提供了商业化的产品与服务。今天将为大家分享...【详细内容】
2021-11-26  DataFunTalk    Tags:大数据   点击:(15)  评论:(0)  加入收藏
导读:数据挖掘是一种发现知识的手段。数据挖掘要求数据分析师通过合理的方法,从数据中获取与挖掘项目相关的知识。作者:赵仁乾 田建中 叶本华 常国珍来源:华章科技数据挖掘是一...【详细内容】
2021-11-23  华章科技  今日头条  Tags:数据挖掘   点击:(20)  评论:(0)  加入收藏
今天再给大家分享一个不错的可视化大屏分析平台模板DataColour。 data-colour 可视化分析平台采用前后端分离模式,后端架构设计采用微服务架构模式。 前端技术:Angularjs、Jq...【详细内容】
2021-11-04  web前端进阶    Tags:DashboardClient   点击:(39)  评论:(0)  加入收藏
在Kubernetes已经成了事实上的容器编排标准之下,微服务的部署变得非常容易。但随着微服务规模的扩大,服务治理带来的挑战也会越来越大。在这样的背景下出现了服务可观测性(obs...【详细内容】
2021-11-02  大数据推荐杂谈    Tags:Prometheus   点击:(40)  评论:(0)  加入收藏
同一产品对老客户的要价竟然比新客户要高?这是当下“大数据杀熟”的直接结果。近年来,随着平台经济的蓬勃发展,大数据在为用户服务之外,也引发了多种不合理现象。为了有效遏制“...【详细内容】
2021-10-29    海外网   Tags:大数据   点击:(31)  评论:(0)  加入收藏
本人03年开始从事贸易行业,多年来一直致力于外贸获客和跨境电商选品等领域,最近有些小伙伴反馈海关数据演示的都挺好为啥用起来不是那么回事?大家看到数据时关注的有产品、采购...【详细内容】
2021-10-28  QD云龙    Tags:数据   点击:(33)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条