您当前的位置:首页 > 电脑百科 > 人工智能

LangChain大模型应用开发指南-AI大模型衍生的新能力

时间:2023-10-07 11:37:03  来源:今日头条  作者:AI小小小智

今天我将为大家介绍LangChAIn基于AI大模型衍生的新能力,Model I/O、Retrieval、和Memory。

组件总览

LangChain大模型应用开发指南-AI大模型衍生的新能力

 

大家看完今天的文章后,可以回头再来看下LangChain的组件与架构图,就能从全局的角度基本理清LangChain的组件与抽象层以及它们之间的相关联系。

本篇文章主要介绍LangChain基于AI大模型衍生的新能力,本次课程整体提纲如下:

LangChain大模型应用开发指南-AI大模型衍生的新能力

 

Model I/O -交互而非IO

LangChain大模型应用开发指南-AI大模型衍生的新能力

 

传统的应用开发通常需要定义好输入输出(IO)的格式和规范,例如文本、图像、音频、视频等。这样做的好处是可以保证数据的一致性和可解释性,但也带来了一些限制和不便,例如需要对数据进行预处理和后处理,需要适配不同的设备和平台,需要考虑用户的习惯和偏好等。

LangChain则提供了一种新的方式:Model I/O,即直接与模型进行交互,而不需要关心IO的细节。你可以把它想象成我们日常交流时使用的嘴巴和耳朵。如上图所示,Model I/O有三种类型:

类型

作用

Prompts

用于向语言模型提供输入的模板,它们可以定义输入变量,输出格式,部分变量等,以便生成符合用户需求的文本

Language models

用于人工智能模型的参数自定义,它们可以根据不同的参数(如温度,最大长度,前缀等)产生不同风格和内容的文本

Output parsers

用于将语言模型的输出解析为更结构化的信息的类如JSON、XML

Model I/O的核心思想是利用AI大模型强大的自然语言理解和生成能力,将任何形式的输入转换为自然语言,然后将自然语言输入到模型中,得到自然语言的输出,再将自然语言转换为任何形式的输出。这样做的好处是可以简化应用开发流程,提高用户体验,增加应用场景和功能。

如下是一个提供了多个角色对话内容的Model I/O交互示例:

from langchain.prompts import ChatPromptTemplate

template = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful AI bot. Your name is {name}."),
    ("human", "Hello, how are you doing?"),
    ("ai", "I'm doing well, thanks!"),
    ("human", "{user_input}"),
])

messages = template.format_messages(
    name="Bob",
    user_input="What is your name?"
)

Retrieval -检索而非查询

LangChain大模型应用开发指南-AI大模型衍生的新能力

 

传统的应用开发通常需要定义好查询(Query)的格式和规范,例如关键词、标签、分类等。这样做的好处是可以保证查询的准确性和有效性,但也带来了一些限制和不便,例如需要对查询进行规范化和优化,需要适配不同的数据源和接口,需要考虑用户的意图和需求等。

LangChain则提供了一种新的方式:Retrieval,即定义好数据源以及加载方式后,直接从模型中检索(Retrieve)所需的信息,而不需要关心查询的细节。你可以把它想象成语言模型使用搜索引擎来查找相关内容。如上图所示,我们可以将Retrieval的能力划分为以下几个部分:

能力

作用

Document loaders

从不同的来源加载文档,支持多种文档类型和位置

Document transformers

对文档进行变换,提取相关的部分,分割成小块

Text embedding models

为文档创建语义嵌入,实现快速有效的相似度搜索

Vector stores

存储和检索嵌入向量,支持多种数据库类型和接口

Retrievers

从数据库中检索数据,支持多种检索算法和优化方法

Retrieval是LangChain中最重要的组件之一,它可以让语言模型拥有更丰富和更准确的上下文。Retrieval通过利用AI大模型强大的知识库和语义理解能力,能够将任何形式的查询转换为自然语言,然后将自然语言输入到模型中,得到自然语言的答案,再将自然语言转换为任何形式的输出。

如下是一个MultiQueryRetriever的使用示例:

# Build a sample vectorDB
from langchain.vectorstores import Chroma
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings.OpenAI import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Load blog post
loader = WebBaseLoader("https://lilianweng.Github.io/posts/2023-06-23-agent/")
data = loader.load()

# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
splits = text_splitter.split_documents(data)

# VectorDB
embedding = OpenAIEmbeddings()
vectordb = Chroma.from_documents(documents=splits, embedding=embedding)

Memory -记忆而非存储

LangChain大模型应用开发指南-AI大模型衍生的新能力

 

传统的应用开发通常需要定义好存储(Storage)的格式和规范,例如数据库、文件、缓存等。这样做的好处是可以保证数据的安全性和可靠性,但也带来了一些限制和不便,例如需要对数据进行备份和恢复,需要适配不同的存储系统和协议,需要考虑用户的隐私和权限等。

LangChain则提供了一种新的方式:Memory,即直接利用模型的记忆(Memory)能力。Memory是LangChain中用于存储和更新上下文的组件,它可以让语言模型记住之前的信息和状态。你可以把它想象成语言模型的大脑,它可以存储短期记忆和长期记忆。根据不同的使用场景,LangChain内部定义的Memory有以下类型:

类型

作用

Conversation Buffer

用于存储对话中的所有消息和元数据的内存,它可以返回一个列表,包含对话中的每个消息和其相关的信息,如发送者,接收者,时间戳等

Conversation Buffer Window Entity

用于从对话缓冲区中提取特定窗口大小内的实体的内存,它可以返回一个字典,包含窗口内出现的实体及其频率,类型和位置

Conversation Knowledge Graph

用于构建和更新对话中涉及的实体和关系的知识图谱的内存,它可以返回一个图结构,包含节点(实体)和边(关系),以及一些统计信息,如图的大小,密度,聚类系数等

Conversation Summary

用于生成对话的摘要的内存,它可以返回一个字符串,包含对话的主要内容和目标

Conversation Summary Buffer

用于存储对话摘要的内存,它可以返回一个列表,包含对话摘要的每个句子和其相关的信息,如生成时间,置信度等

Conversation Token Buffer

用于存储对话中的所有单词和标点符号的内存,它可以返回一个列表,包含对话中的每个单词或标点符号及其相关的信息,如词性,命名实体类型等

Vector Store

用于将对话中的文本或实体转换为向量表示,并进行相似度计算或聚类分析的内存,它可以返回一个矩阵,包含对话中每个文本或实体的向量表示,以及一些度量值,如余弦相似度,欧氏距离等

Memory的核心思想是利用AI大模型强大的参数和数据容量,将任何形式的数据转换为自然语言,并将其作为模型的输入或输出。这样做的好处是可以简化应用开发流程,提高数据处理速度,增加数据来源和质量。

如下是在链中中使用memory的示例:

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory


llm = OpenAI(temperature=0)
# Notice that "chat_history" is present in the prompt template
template = """You are a nice chatbot having a conversation with a human.

Previous conversation:
{chat_history}

New human question: {question}
Response:"""
prompt = PromptTemplate.from_template(template)
# Notice that we need to align the `memory_key`
memory = ConversationBufferMemory(memory_key="chat_history")
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

总结

本文以传统应用编程设计模式和思维为对比对象,介绍了LangChain基于AI大模型衍生出的三种新的能力:Model I/O、Retrieval和Memory,它们分别解决了传统AI应用开发中遇到的IO、Query和Storage方面的问题和挑战。通过利用这些能力,应用开发者可以开发出更简单、更高效、更创新的AI应用。

通过本文的指导,读者可以迭代在传统应用编程中累积的思维方式和经验,充分利用了AI大模型衍生的新能力的创新应用。



Tags:LangChain   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
一文解析如何基于 LangChain 构建 LLM 应用程序
Hello folks,我是 Luga,今天我们继续来聊一下人工智能(AI)生态领域相关的技术 - LangChain ,本文将继续聚焦在针对 LangChain 的技术进行剖析,使得大家能够了解 LangChain 实现...【详细内容】
2024-03-07  Search: LangChain  点击:(31)  评论:(0)  加入收藏
LangChain与Redis合作搞事情!创建提高财务文档分析准确性的工具
作者 | Tannista编译 | 星璇出品 | 51CTO技术栈(微信号:blog51cto)让ChatGPT准确回答来自证券交易委员会文件的复杂问题,可谓是到处都是坑。先进人工智能模型的出现彻底改变了自...【详细内容】
2023-12-27  Search: LangChain  点击:(110)  评论:(0)  加入收藏
如何使用LangChain和OpenAI API分析文档?
译者 | 布加迪审校 | 重楼从文档和数据中提取洞察力对于您做出明智的决策至关重要。然而在处理敏感信息时,会出现隐私问题。结合使用LangChain与OpenAI API,您就可以分析本地...【详细内容】
2023-11-23  Search: LangChain  点击:(201)  评论:(0)  加入收藏
如何使用LangChain、RStudio和足够的Python生成人工智能
译者 | 李睿审校 | 重楼LangChain是当今最热门的开发平台之一,用于创建使用生成式人工智能的应用程序,但它只适用于Python和JavaScript。对于想要使用LangChain的R程序员,该怎...【详细内容】
2023-11-21  Search: LangChain  点击:(229)  评论:(0)  加入收藏
LLMs应用框架:LangChain端到端语言模型
在当今数字化时代,语言处理技术的重要性日益凸显。大语言模型(LLMs)作为其中的重要分支,已经在多个领域取得了显著的进展。然而,如何将这些模型应用到实际场景中,实现端到端的自动...【详细内容】
2023-11-16  Search: LangChain  点击:(167)  评论:(0)  加入收藏
LangChain大模型应用开发指南-AI大模型衍生的新能力
今天我将为大家介绍LangChain基于AI大模型衍生的新能力,Model I/O、Retrieval、和Memory。组件总览 大家看完今天的文章后,可以回头再来看下LangChain的组件与架构图,就能从全...【详细内容】
2023-10-07  Search: LangChain  点击:(23)  评论:(0)  加入收藏
LangChain实战:大语言模型理解代码库
作者 | 崔皓审校 | 重楼摘要随着LLM(大语言模型)的发展,最近流行起利用大语言模型对源代码进行分析的潮流。网络博主纷纷针对GitHub Co-Pilot、Code Interpreter、Codium和Code...【详细内容】
2023-09-20  Search: LangChain  点击:(360)  评论:(0)  加入收藏
使用LangChain和DeepInfra构建客户支持聊天机器人的操作指南
译者 | 布加迪审校 | 重楼您可能在日常的网上互动中遇到过聊天机器人,但有没有考虑过底层为这些数字助手提供支持的技术?聊天机器人(尤其在客户支持领域)已经成为现代企业的一个...【详细内容】
2023-09-18  Search: LangChain  点击:(204)  评论:(0)  加入收藏
非程序员小白版本地部署ChatGLM2-6B +LangChain 个人知识库模型
ChatGLM2-6B 部署我这次采用的是本地部署,机器是 Macbook pro M1 64G进入你的系统“终端”# 键盘:command + 空格键 # 搜索“终端”,点击“打开”,进入“终端”界面 下载源码#...【详细内容】
2023-07-31  Search: LangChain  点击:(837)  评论:(0)  加入收藏
把c跑起来的三个方法
使用LangChain开发LLM应用时,需要机器进行GLM部署,好多同学第一步就被劝退了,那么如何绕过这个步骤先学习LLM模型的应用,对Langchain进行快速上手?本片讲解3个把LangChain跑起来...【详细内容】
2023-07-04  Search: LangChain  点击:(150)  评论:(0)  加入收藏
▌简易百科推荐
多方热议人工智能产业新机遇
编者按  从前沿科技展会到高层对话平台,从上海、重庆到博鳌,从线上到线下……一场场高规格、大规模的盛会中,人工智能正在成为各界热议的高频词。赋能千...【详细内容】
2024-04-08    中国家电网  Tags:人工智能   点击:(4)  评论:(0)  加入收藏
​人形机器人时代来了吗
日前,由中国人形机器人(11.080, -0.05, -0.45%)百人会主办的人形机器人大赛在北京经济技术开发区开赛。工作人员向参观者展示一款人形机器人。参观者与一款陪护型人形机器人...【详细内容】
2024-04-08    中国青年报  Tags:​人形机器人   点击:(4)  评论:(0)  加入收藏
AI重塑社交:腾讯与字节跳动的新赛场
文|新火种 一号编辑|美美最近,腾讯和字节跳动这两大互联网巨头几乎同步推出了各自的AI社交产品,尽管腾讯和字节跳动在前段时间刚刚“破冰”,但这一举措不仅意味着这两大巨头之...【详细内容】
2024-04-07    蓝鲸财经  Tags:AI   点击:(7)  评论:(0)  加入收藏
第一批用 Kimi 做内容的网红已经杀疯了
作者:王东东 文章来自:斗战圣佛小组技术信仰派 VS 市场信仰派 朱啸虎和月之暗面老板杨植麟在前几天有一场不算 battle 的 battle。battle 的争论点是:大模型有没有戏。技术派...【详细内容】
2024-04-04    斗战圣佛小组  Tags:Kimi   点击:(4)  评论:(0)  加入收藏
昆仑万维发布面向人工智能时代的六条人才宣言
过去的一年多,是人工智能取得非凡进步的一年。在这充满突破性技术飞跃和备受争议的一年里,我们见证了人工智能的快速发展和广泛的影响,人工智能已经迅速地融入了我们的生活,深刻...【详细内容】
2024-04-03    砍柴网  Tags:昆仑万维   点击:(7)  评论:(0)  加入收藏
AI干掉声优?音频大模型追逐“图灵时刻”
七十年前,“人工智能之父”图灵提出,如果人无法判断屏幕的另一侧究竟是人还是机器,就证明机器具备了人一样的智能。这一经典的图灵测试如同北斗星一般,指引着AI行业的工作者们不...【详细内容】
2024-04-03    第一财经网  Tags:AI   点击:(5)  评论:(0)  加入收藏
生成式人工智能有哪些新趋势?
相较于去年,当下我们所能体验的人工智能技术的范围已经大幅提升。从搜索引擎、电商平台再到社媒平台,只要是以搜索结果为导向的内容,都会出现它的身影。但其实,人工智能的应用场...【详细内容】
2024-04-03  品谈教师帮    Tags:人工智能   点击:(6)  评论:(0)  加入收藏
AI世界的新难题:互联网的信息不够用了!
高质量数据的紧缺正成为AI发展的重要障碍。4月1日,据媒体报道,随着OpenAI、Google等企业不断深入发展AI技术,科技巨头们遇到了一个新问题:现有的互联网信息量可能不足以支撑他们...【详细内容】
2024-04-02  硬AI    Tags:AI   点击:(6)  评论:(0)  加入收藏
今天起,ChatGPT无需注册就能用了!
 来源:量子位    金磊 克雷西 发自 凹非寺  就在刚刚,OpenAI狠狠地open了一把:从今天起,ChatGPT打开即用,无需再注册帐号和登录了!  像这样,直接登录网站,然后就可以开启对...【详细内容】
2024-04-02    量子位   Tags:ChatGPT   点击:(7)  评论:(0)  加入收藏
AI时代,面对死亡有了第二种选择?
今年春节期间,罗佩玺瞒着妈妈用AI技术“复活”了外婆,她将妈妈现在的模样和外婆留下的老照片合成在一起。时隔60多年,妈妈和外婆终于又“见面”了,这是她送给妈妈的生日礼物。收...【详细内容】
2024-04-02    中国青年报  Tags:AI时代   点击:(7)  评论:(0)  加入收藏
站内最新
站内热门
站内头条