您当前的位置:首页 > 电脑百科 > 程序开发 > 编程百科

使用 Embeddings 将自建知识库接入 OpenAI

时间:2023-05-22 13:44:34  来源:闪念基因  作者:

什么是嵌入

嵌入(embeddings)捕捉文本、图像、视频或其他信息类型的“相关性”。这种相关性最常用于以下方面:

  • 搜索:搜索词与文本主体的相似程度有多高?
  • 推荐:两个产品有多相似?
  • 分类:如何对文本进行分类?
  • 聚类:如何识别趋势?

让我们来看一下文本嵌入的一个例子。假设我们有三个短语:

  1. “The cat chases the mouse”(猫追逐老鼠)
  2. “The kitten hunts rodents”(小猫捕猎啮齿动物)
  3. “I like ham sandwiches”(我喜欢火腿三明治)

你的工作是将具有相似含义的短语分组。对于人类来说,这很容易完成分组。短语 1 和 2 的含义几乎完全相同,而短语 3 的意思完全不同。

尽管短语 1 和 2 含义相似,但它们没有共同的词汇(除了“the”)。但是,我们如何让计算机明白它们的含义是相似的呢?

人类语言

人类使用单词和符号来传达语言。但是孤立的单词大多没有意义,我们需要从共同的知识和经验中汲取理解它们的含义。例如,“你应该谷歌一下” 这个短语只有在你知道谷歌是一个搜索引擎,并且人们一直在用它作为动词时才有意义。

同样地,我们需要训练神经网络模型来理解人类语言。一个有效的模型应该在数百万不同的例子上进行训练,以了解每个单词、短语、句子或段落在不同的语境中可能意味着什么。

那么这与嵌入有什么关系呢?

嵌入如何工作

嵌入将离散信息(单词和符号)压缩成分布式连续值数据(向量)。如果我们拿之前的短语并在图表上标记它们,可能会看起来像这样:

 

短语 1 和 2 将被绘制的位置比较接近,因为它们的含义相似。而短语 3 所在的位置与其他短语的距离较远,因为它与其它短语没有关联。如果我们有第四个短语 “Sally ate Swiss cheese”(莎莉吃了瑞士奶酪),它可能会位于于短语 3(奶酪可以放在三明治上)和短语 1(老鼠喜欢瑞士奶酪)之间的某个位置。

在这个例子中,我们只有两个维度:X 轴和 Y 轴。实际上,我们需要更多维度来有效地捕捉人类语言的复杂性。

AI target=_blank class=infotextkey>OpenAI 的嵌入

OpenAI 提供了一个 API,可以使用其语言模型为文本字符串生成嵌入。您提供任何文本信息(博客文章、文档、公司的知识库),它将输出代表该文本“含义”的浮点数向量。与上面的 2 维示例相比,他们最新的嵌入模型 text-embedding-ada-002 会输出 1536 个维度。

为什么要使用嵌入呢?OpenAI 的 text-davinci-003 模型面临的最大挑战之一是 4000 个 token 大小的限制,必须要将提示和结果完成都放在 4000 个 token 内。如果您想提示 GPT-3 回答关于自己的自定义知识库的问题,要避免在每个提示都携带这些内容。如果自定义知识库内容较多,提示可能会超过大小限制;而且每次都携带这些内容,也会造成浪费。

首先,我们要借助 OpenAI 将自定义知识库生成嵌入并保存到数据库,然后将提示分为两个阶段来帮助解决这个问题:

  • 查询您的嵌入数据库,寻找与问题相关的最相关文档。
  • 将这些文档作为上下文注入到 GPT-3 中,让它在回答中引用。

这样处理之后,OpenAI 不仅会返回现有的文档,它还能将各种信息融合为一个连贯的答案。整个问题的处理流程可能如下所示:

  • 预处理知识库,并为每个知识库文档页面生成嵌入
  • 存储嵌入以备以后使用(更多信息)
  • 构建一个搜索页面来提示用户输入
  • 获取用户输入,生成一次性嵌入,然后对已预处理的嵌入执行相似性搜索。
  • 将嵌入和搜索的问题提交给 ChatGPT,并将最终内容返回给用户。

实际应用中的嵌入

开源数据处理服务平台 Supabase 的文档提供了 AI 搜索功能,有兴趣可以去 https://supabase.com/docs 体验一下。

,时长00:56

然后,有一个开源项目 nextjs-openai-doc-search 可以快速搭建出一套 AI 文档系统,它里面所有用到的东西都是开源的,只需点击一下文档中的 “Deploy” 就可以部署出一套来,感兴趣可以试用一下。

整个项目基于 Markdown 文档,每次部署的时候将 Markdown 处理,每次查询的时候都要进行相似性搜索,它的实现细节如下:

[ 构建] 对知识库(您在页面文件夹中的 .mdx 文件)进行预处理,生成嵌入。
[ 构建] 使用 pgvector 将嵌入存储在 Postgres 中。
[ 运行] 执行向量相似性搜索以找到与问题相关的内容。
[ 运行] 将内容注入到 OpenAI GPT-3 文本完成提示中,并将响应流式传输给客户端。

步骤 1 和 2 在构建时发生,例如当 Vercel 构建您的 Next.js 应用程序时。在此期间,将执行 generate-embeddings 脚本,该脚本执行以下任务:

 

步骤 3 和 4 在运行时发生,即用户提交问题时。当发生这种情况时,将执行以下任务:

 

上面的这个项目是在每次部署的时候将文档处理成嵌入,另外一个项目
deno-fresh-openai-doc-search 在 CI/CD 过程中将文档处理成嵌入。

总结

在自建知识库中应用,通过将文本转化为嵌入向量的形式,利用嵌入 OpenAI 可以对自建知识库中的文本进行自动分类和标签生成,从而更好地组织文件和资源;搭配 OpenAI 的问答系统可以根据用户的提问,从自建知识库中智能查找相关信息并给出回答。帮助我们更好地管理和发挥自建知识库的价值,提高知识的可用性和利用效率。

相关文档

  • https://platform.openai.com/docs/guides/embeddings
  • https://supabase.com/blog/openai-embeddings-postgres-vector
  • https://supabase.com/blog/chatgpt-supabase-docs
  • https://Github.com/supabase-community/nextjs-openai-doc-search
  • https://github.com/supabase-community/deno-fresh-openai-doc-search

作者:hhhhhh

来源:微信公众号:KooFE前端团队

出处
:https://mp.weixin.qq.com/s/-PQyCv4Q_Al1fUorpp6CMA



Tags:Embeddings   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
使用 Embeddings 将自建知识库接入 OpenAI
什么是嵌入嵌入(embeddings)捕捉文本、图像、视频或其他信息类型的“相关性”。这种相关性最常用于以下方面: 搜索:搜索词与文本主体的相似程度有多高? 推荐:两个产品有多相似? 分...【详细内容】
2023-05-22  Search: Embeddings  点击:(646)  评论:(0)  加入收藏
▌简易百科推荐
即将过时的 5 种软件开发技能!
作者 | Eran Yahav编译 | 言征出品 | 51CTO技术栈(微信号:blog51cto) 时至今日,AI编码工具已经进化到足够强大了吗?这未必好回答,但从2023 年 Stack Overflow 上的调查数据来看,44%...【详细内容】
2024-04-03    51CTO  Tags:软件开发   点击:(6)  评论:(0)  加入收藏
跳转链接代码怎么写?
在网页开发中,跳转链接是一项常见的功能。然而,对于非技术人员来说,编写跳转链接代码可能会显得有些困难。不用担心!我们可以借助外链平台来简化操作,即使没有编程经验,也能轻松实...【详细内容】
2024-03-27  蓝色天纪    Tags:跳转链接   点击:(13)  评论:(0)  加入收藏
中台亡了,问题到底出在哪里?
曾几何时,中台一度被当做“变革灵药”,嫁接在“前台作战单元”和“后台资源部门”之间,实现企业各业务线的“打通”和全域业务能力集成,提高开发和服务效率。但在中台如火如荼之...【详细内容】
2024-03-27  dbaplus社群    Tags:中台   点击:(9)  评论:(0)  加入收藏
员工写了个比删库更可怕的Bug!
想必大家都听说过删库跑路吧,我之前一直把它当一个段子来看。可万万没想到,就在昨天,我们公司的某位员工,竟然写了一个比删库更可怕的 Bug!给大家分享一下(不是公开处刑),希望朋友们...【详细内容】
2024-03-26  dbaplus社群    Tags:Bug   点击:(5)  评论:(0)  加入收藏
我们一起聊聊什么是正向代理和反向代理
从字面意思上看,代理就是代替处理的意思,一个对象有能力代替另一个对象处理某一件事。代理,这个词在我们的日常生活中也不陌生,比如在购物、旅游等场景中,我们经常会委托别人代替...【详细内容】
2024-03-26  萤火架构  微信公众号  Tags:正向代理   点击:(11)  评论:(0)  加入收藏
看一遍就理解:IO模型详解
前言大家好,我是程序员田螺。今天我们一起来学习IO模型。在本文开始前呢,先问问大家几个问题哈~什么是IO呢?什么是阻塞非阻塞IO?什么是同步异步IO?什么是IO多路复用?select/epoll...【详细内容】
2024-03-26  捡田螺的小男孩  微信公众号  Tags:IO模型   点击:(9)  评论:(0)  加入收藏
为什么都说 HashMap 是线程不安全的?
做Java开发的人,应该都用过 HashMap 这种集合。今天就和大家来聊聊,为什么 HashMap 是线程不安全的。1.HashMap 数据结构简单来说,HashMap 基于哈希表实现。它使用键的哈希码来...【详细内容】
2024-03-22  Java技术指北  微信公众号  Tags:HashMap   点击:(11)  评论:(0)  加入收藏
如何从头开始编写LoRA代码,这有一份教程
选自 lightning.ai作者:Sebastian Raschka机器之心编译编辑:陈萍作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大...【详细内容】
2024-03-21  机器之心Pro    Tags:LoRA   点击:(12)  评论:(0)  加入收藏
这样搭建日志中心,传统的ELK就扔了吧!
最近客户有个新需求,就是想查看网站的访问情况。由于网站没有做google的统计和百度的统计,所以访问情况,只能通过日志查看,通过脚本的形式给客户导出也不太实际,给客户写个简单的...【详细内容】
2024-03-20  dbaplus社群    Tags:日志   点击:(4)  评论:(0)  加入收藏
Kubernetes 究竟有没有 LTS?
从一个有趣的问题引出很多人都在关注的 Kubernetes LTS 的问题。有趣的问题2019 年,一个名为 apiserver LoopbackClient Server cert expired after 1 year[1] 的 issue 中提...【详细内容】
2024-03-15  云原生散修  微信公众号  Tags:Kubernetes   点击:(6)  评论:(0)  加入收藏
相关文章
    无相关信息
站内最新
站内热门
站内头条