您当前的位置:首页 > 电脑百科 > 程序开发 > 编程百科

如何从头开始编写LoRA代码,这有一份教程

时间:2024-03-21 12:52:16  来源:  作者:机器之心Pro

选自 lightning.AI

作者:Sebastian Raschka

机器之心编译

编辑:陈萍

作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。

LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。不同于其他技术,LoRA 不是调整神经网络的所有参数,而是专注于更新一小部分低秩矩阵,从而大大减少了训练模型所需的计算量。

由于 LoRA 的微调质量与全模型微调相当,很多人将这种方法称之为微调神器。自发布以来,相信很多人都对这项技术感到好奇,想要从头开始编写代码从而更好的理解该研究。以前苦于没有合适的文档说明,现在,教程来了。

这篇教程的作者是知名机器学习与 AI 研究者 Sebastian Raschka,他表示在各种有效的 LLM 微调方法中,LoRA 仍然是自己的首选。为此,Sebastian 专门写了一篇博客《Code LoRA From Scratch》,从头开始构建 LoRA,在他看来,这是一种很好的学习方法。

简单来说,本文通过从头编写代码的方式来介绍低秩自适应(LoRA),实验中 Sebastian 对 DistilBERT 模型进行了微调,并用于分类任务。

LoRA 与传统微调方法的对比结果显示,使用 LoRA 方法在测试准确率上达到了 92.39%,这与仅微调模型最后几层相比(86.22% 的测试准确率)显示了更好的性能。

Sebastian 是如何实现的,我们接着往下看。

从头开始编写 LoRA

用代码的方式表述一个 LoRA 层是这样的:

其中,in_dim 是想要使用 LoRA 修改的层的输入维度,与此对应的 out_dim 是层的输出维度。代码中还添加了一个超参数即缩放因子 alpha,alpha 值越高意味着对模型行为的调整越大,值越低则相反。此外,本文使用随机分布中的较小值来初始化矩阵 A,并用零初始化矩阵 B。

值得一提的是,LoRA 发挥作用的地方通常是神经网络的线性(前馈)层。举例来说,对于一个简单的 PyTorch 模型或具有两个线性层的模块(例如,这可能是 Transformer 块的前馈模块),其前馈(forward)方法可以表述为:

在使用 LoRA 时,通常会将 LoRA 更新添加到这些线性层的输出中,又得到代码如下:

如果你想通过修改现有 PyTorch 模型来实现 LoRA ,一种简单方法是将每个线性层替换为 LinearWithLoRA 层:

以上这些概念总结如下图所示:

为了应用 LoRA,本文将神经网络中现有的线性层替换为结合了原始线性层和 LoRALayer 的 LinearWithLoRA 层。

如何上手使用 LoRA 进行微调

LoRA 可用于 GPT 或图像生成等模型。为了简单说明,本文采用一个用于文本分类的小型 BERT(DistilBERT) 模型来说明。

由于本文只训练新的 LoRA 权重,因而需要将所有可训练参数的 requires_grad 设置为 False 来冻结所有模型参数:

接下来,使用 print (model) 检查一下模型的结构:

由输出可知,该模型由 6 个 transformer 层组成,其中包含线性层:

此外,该模型有两个线性输出层:

通过定义以下赋值函数和循环,可以选择性地为这些线性层启用 LoRA:

使用 print (model) 再次检查模型,以检查其更新的结构:

正如上面看到的,线性层已成功地被 LinearWithLoRA 层取代。

如果使用上面显示的默认超参数来训练模型,则会在 IMDb 电影评论分类数据集上产生以下性能:

  • 训练准确率:92.15%
  • 验证准确率:89.98%
  • 测试准确率:89.44%

在下一节中,本文将这些 LoRA 微调结果与传统微调结果进行了比较。

与传统微调方法的比较

在上一节中,LoRA 在默认设置下获得了 89.44% 的测试准确率,这与传统的微调方法相比如何?

为了进行比较,本文又进行了一项实验,以训练 DistilBERT 模型为例,但在训练期间仅更新最后 2 层。研究者通过冻结所有模型权重,然后解冻两个线性输出层来实现这一点:

只训练最后两层得到的分类性能如下:

  • 训练准确率:86.68%
  • 验证准确率:87.26%
  • 测试准确率:86.22%

结果显示,LoRA 的表现优于传统微调最后两层的方法,但它使用的参数却少了 4 倍。微调所有层需要更新的参数比 LoRA 设置多 450 倍,但测试准确率只提高了 2%。

优化 LoRA 配置

前面讲到的结果都是 LoRA 在默认设置下进行的,超参数如下:

假如用户想要尝试不同的超参数配置,可以使用如下命令:

不过,最佳超参数配置如下:

在这种配置下,得到结果:

  • 验证准确率:92.96%
  • 测试准确率:92.39%

值得注意的是,即使 LoRA 设置中只有一小部分可训练参数(500k VS 66M),但准确率还是略高于通过完全微调获得的准确率。

原文链接:https://lightning.ai/lightning-ai/studIOS/code-lora-from-scratch?continueFlag=f5fc72b1f6eeeaf74b648b2aa8aaf8b6



Tags:LoRA   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
如何从头开始编写LoRA代码,这有一份教程
选自 lightning.ai作者:Sebastian Raschka机器之心编译编辑:陈萍作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大...【详细内容】
2024-03-21  Search: LoRA  点击:(12)  评论:(0)  加入收藏
LoRA模型的容量与覆盖范围研究与扩展
LoRA(LongRange)是一种低功耗、远距离通信的无线技术,被广泛应用于物联网(IoT)领域。LoRA技术的独特之处在于其长距离通信能力和低功耗特性,使得它成为连接设备和传感器的理想选择...【详细内容】
2023-12-13  Search: LoRA  点击:(46)  评论:(0)  加入收藏
S-LoRA:一个GPU运行数千大模型成为可能
编辑:蛋酱一般来说,大语言模型的部署都会采用「预训练 — 然后微调」的模式。但是,当针对众多任务(如个性化助手)对 base 模型进行微调时,训练和服务成本会变得非常高昂。低...【详细内容】
2023-11-16  Search: LoRA  点击:(206)  评论:(0)  加入收藏
QLORA:大模型微调的内存高效方法
在当今的大数据时代,深度学习已经广泛应用于各个领域,并取得了显著的成果。然而,对于大规模的预训练模型,如BERT、GPT等,其训练和微调过程需要消耗大量的计算资源和内存。为了解...【详细内容】
2023-11-16  Search: LoRA  点击:(198)  评论:(0)  加入收藏
LongLoRA:超长上下文,大语言模型高效微调方法
麻省理工学院和香港中文大学联合发布了LongLoRA,这是一种全新的微调方法,可以增强大语言模型的上下文能力,而无需消耗大量算力资源。通常,想增加大语言模型的上下文处理能力,需要...【详细内容】
2023-10-07  Search: LoRA  点击:(384)  评论:(0)  加入收藏
能像乐高一样组合,LoraHub挖掘LoRA 模块化特性
编辑:Panda低秩自适应(Low-Rank Adaptation, LoRA)是一种常用的微调技术,让基础 LLM 可以高效地适应具体任务。近日,来自新加坡 Sea AI Lab、圣路易斯华盛顿大学和艾伦人工智能研...【详细内容】
2023-08-04  Search: LoRA  点击:(170)  评论:(0)  加入收藏
在Ubuntu 16.04 LTS服务器上安装FreeRADIUS和Daloradius的方法
FreeRADIUS 为AAA Radius Linux下开源解决方案,DaloRadius为图形化web管理工具。 freeradius一般用来进行账户认证管理,记账管理,常见的电信运营商的宽带账户,上网账户管理,记账,...【详细内容】
2021-06-10  Search: LoRA  点击:(419)  评论:(0)  加入收藏
物联网中的LoRa,到底是个什么鬼?
如今处于物联网时代,随着物联网的快速发展,无线通信技术也得以迈步发展,在物联网网络层的多种连接技术里,不仅需要速率和稳定性更高的5G技术,也需要低功耗、远距离、大连接的LPWAN(Low-Power Wide-Area Network,低功耗广域网...【详细内容】
2019-08-02  Search: LoRA  点击:(595)  评论:(0)  加入收藏
▌简易百科推荐
即将过时的 5 种软件开发技能!
作者 | Eran Yahav编译 | 言征出品 | 51CTO技术栈(微信号:blog51cto) 时至今日,AI编码工具已经进化到足够强大了吗?这未必好回答,但从2023 年 Stack Overflow 上的调查数据来看,44%...【详细内容】
2024-04-03    51CTO  Tags:软件开发   点击:(5)  评论:(0)  加入收藏
跳转链接代码怎么写?
在网页开发中,跳转链接是一项常见的功能。然而,对于非技术人员来说,编写跳转链接代码可能会显得有些困难。不用担心!我们可以借助外链平台来简化操作,即使没有编程经验,也能轻松实...【详细内容】
2024-03-27  蓝色天纪    Tags:跳转链接   点击:(12)  评论:(0)  加入收藏
中台亡了,问题到底出在哪里?
曾几何时,中台一度被当做“变革灵药”,嫁接在“前台作战单元”和“后台资源部门”之间,实现企业各业务线的“打通”和全域业务能力集成,提高开发和服务效率。但在中台如火如荼之...【详细内容】
2024-03-27  dbaplus社群    Tags:中台   点击:(8)  评论:(0)  加入收藏
员工写了个比删库更可怕的Bug!
想必大家都听说过删库跑路吧,我之前一直把它当一个段子来看。可万万没想到,就在昨天,我们公司的某位员工,竟然写了一个比删库更可怕的 Bug!给大家分享一下(不是公开处刑),希望朋友们...【详细内容】
2024-03-26  dbaplus社群    Tags:Bug   点击:(5)  评论:(0)  加入收藏
我们一起聊聊什么是正向代理和反向代理
从字面意思上看,代理就是代替处理的意思,一个对象有能力代替另一个对象处理某一件事。代理,这个词在我们的日常生活中也不陌生,比如在购物、旅游等场景中,我们经常会委托别人代替...【详细内容】
2024-03-26  萤火架构  微信公众号  Tags:正向代理   点击:(10)  评论:(0)  加入收藏
看一遍就理解:IO模型详解
前言大家好,我是程序员田螺。今天我们一起来学习IO模型。在本文开始前呢,先问问大家几个问题哈~什么是IO呢?什么是阻塞非阻塞IO?什么是同步异步IO?什么是IO多路复用?select/epoll...【详细内容】
2024-03-26  捡田螺的小男孩  微信公众号  Tags:IO模型   点击:(8)  评论:(0)  加入收藏
为什么都说 HashMap 是线程不安全的?
做Java开发的人,应该都用过 HashMap 这种集合。今天就和大家来聊聊,为什么 HashMap 是线程不安全的。1.HashMap 数据结构简单来说,HashMap 基于哈希表实现。它使用键的哈希码来...【详细内容】
2024-03-22  Java技术指北  微信公众号  Tags:HashMap   点击:(11)  评论:(0)  加入收藏
如何从头开始编写LoRA代码,这有一份教程
选自 lightning.ai作者:Sebastian Raschka机器之心编译编辑:陈萍作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大...【详细内容】
2024-03-21  机器之心Pro    Tags:LoRA   点击:(12)  评论:(0)  加入收藏
这样搭建日志中心,传统的ELK就扔了吧!
最近客户有个新需求,就是想查看网站的访问情况。由于网站没有做google的统计和百度的统计,所以访问情况,只能通过日志查看,通过脚本的形式给客户导出也不太实际,给客户写个简单的...【详细内容】
2024-03-20  dbaplus社群    Tags:日志   点击:(4)  评论:(0)  加入收藏
Kubernetes 究竟有没有 LTS?
从一个有趣的问题引出很多人都在关注的 Kubernetes LTS 的问题。有趣的问题2019 年,一个名为 apiserver LoopbackClient Server cert expired after 1 year[1] 的 issue 中提...【详细内容】
2024-03-15  云原生散修  微信公众号  Tags:Kubernetes   点击:(5)  评论:(0)  加入收藏
站内最新
站内热门
站内头条