您当前的位置:首页 > 电脑百科 > 程序开发 > 算法

比RSA加密更快更安全的加密算法ECC

时间:2020-12-30 11:53:36  来源:  作者:

前几天我发表一片关于RSA的加密算法,很多人留言让我讲解一下ECC 椭圆加密算法。首先我在这里声明一下 椭圆加密算法不像RSA 用中学的数学知识就可以解决。本文中也是参考了网上的很多资料,

椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。

椭圆曲线在密码学中的使用,是1985年由Neal Koblitz和Victor Miller分别独立提出的。

椭圆曲线

一般情况下,椭圆曲线可用下列方程式来表示,其中a,b,c,d为系数。

 

比RSA加密更快更安全的加密算法ECC

 

例如,当a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:

比RSA加密更快更安全的加密算法ECC

 

该椭圆曲线E的图像如图X-1所示,可以看出根本就不是椭圆形。

比RSA加密更快更安全的加密算法ECC

 

定义椭圆曲线的运算规则

加法

过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C

比RSA加密更快更安全的加密算法ECC

 

二倍运算

上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。

比RSA加密更快更安全的加密算法ECC

 

正负取反

将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:

比RSA加密更快更安全的加密算法ECC

 

无穷远点

如果将A与-A相加,过A与-A的直线平行于y轴,可以认为直线与椭圆曲线相交于无穷远点。

综上,定义了A+B、2A运算,因此给定椭圆曲线的某一点G,可以求出2G、3G(即G + 2G)、4G......。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。此即为椭圆曲线加密算法背后的数学原理。

有限域上的椭圆曲线运算

椭圆曲线要形成一条光滑的曲线,要求x,y取值均为实数,即实数域上的椭圆曲线。但椭圆曲线加密算法,并非使用实数域,而是使用有限域。按数论定义,有限域GF(p)指给定某个质数p,由0、1、2......p-1共p个元素组成的整数集合中定义的加减乘除运算。

假设椭圆曲线为y² = x³ + x + 1,其在有限域GF(23)上时,写作:  y² ≡ x³ + x + 1 (mod 23)

此时,椭圆曲线不再是一条光滑曲线,而是一些不连续的点,如下图所示。以点(1,7)为例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此还有如下点:

(0,1) (0,22)  (1,7) (1,16)  (3,10) (3,13)  (4,0)  (5,4) (5,19)  (6,4) (6,19)  (7,11) (7,12)  (9,7) (9,16)  (11,3) (11,20)  等等。

另外,如果P(x,y)为椭圆曲线上的点,则-P即(x,-y)也为椭圆曲线上的点。如点P(0,1),-P=(0,-1)=(0,22)也为椭圆曲线上的点。

比RSA加密更快更安全的加密算法ECC

 

计算xG

相关公式如下:  有限域GF(p)上的椭圆曲线y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,则R(Xr,Yr) = P+Q 由如下规则确定:

Xr = (λ² - Xp - Xq) mod p  Yr = (λ(Xp - Xr) - Yp) mod p  其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),假设以(0,1)为G点,计算2G、3G、4G...xG等等,方法如下:

计算2G:  λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12  Xr = (12² - 0 - 0) mod 23 = 6  Yr = (12(0 - 6) - 1) mod 23 = 19  即2G为点(6,19)

计算3G:  3G = G + 2G,即(0,1) + (6,19)  λ = (19 - 1)/(6 - 0) mod 23 = 3  Xr = (3² - 0 - 6) mod 23 = 3  Yr = (3(0 - 3) - 1) mod 23 = 13  即3G为点(3, 13)

比RSA加密更快更安全的加密算法ECC

 

椭圆曲线加解密算法原理

建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下:

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

公钥加密:  选择随机数r,将消息M生成密文C,该密文是一个点对,即:  C = {rG, M+rK},其中K为公钥

私钥解密:  M + rK - k(rG) = M + r(kG) - k(rG) = M  其中k、K分别为私钥、公钥。

椭圆曲线签名算法原理

椭圆曲线签名算法,即ECDSA。  设私钥、公钥分别为k、K,即K = kG,其中G为G点。

私钥签名:  1、选择随机数r,计算点rG(x, y)。  2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。  3、将消息M、和签名{rG, s}发给接收方。

公钥验证签名:  1、接收方收到消息M、以及签名{rG=(x,y), s}。  2、根据消息求哈希h。  3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。

原理如下:  hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s  = r(h+xk)G / (h+kx) = rG

签名过程

假设要签名的消息是一个字符串:“Hello World!”。DSA签名的第一个步骤是对待签名的消息生成一个消息摘要。不同的签名算法使用不同的消息摘要算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成结束后,应用签名算法对摘要进行签名:
产生一个随机数k
利用随机数k,计算出两个大数r和s。将r和s拼在一起就构成了对消息摘要的签名。
这里需要注意的是,因为随机数k的存在,对于同一条消息,使用同一个算法,产生的签名是不一样的。从函数的角度来理解,签名函数对同样的输入会产生不同的输出。因为函数内部会将随机值混入签名的过程。

验证过程

关于验证过程,这里不讨论它的算法细节。从宏观上看,消息的接收方从签名中分离出r和s,然后利用公开的密钥信息和s计算出r。如果计算出的r和接收到的r值相同,则表示验证成功。否则,表示验证失败。

这个是网上ecc 的demo

# -*- coding:utf-8 -*-

def get_inverse(value, p):
    """
    求逆元
    :param value: 待求逆元的值
    :param p: 模数
    """
    for i in range(1, p):
        if (i * value) % p == 1:
            return i
    return -1

def get_gcd(value1, value2):
    """
    辗转相除法求最大公约数
    :param value1:
    :param value2:
    """
    if value2 == 0:
        return value1
    else:
        return get_gcd(value2, value1 % value2)

def get_PaddQ(x1, y1, x2, y2, a, p):
    """
    计算P+Q
    :param x1: P点横坐标
    :param y1: P点纵坐标
    :param x2: Q点横坐标
    :param y2: Q点纵坐标
    :param a: 曲线参数
    :param p: 曲线模数
    """
    flag = 1 # 定义符号位(+/-)

    # 如果P=Q,斜率k=(3x^2+a)/2y mod p
    if x1 == x2 and y1 == y2:
        member = 3 * (x1 ** 2) + a # 分子
        denominator = 2 * y1 # 分母

    # 如果P≠Q, 斜率k=(y2-y1)/(x2-x1) mod p
    else:
        member = y2 - y1
        denominator = x2 - x1

        if member * denominator < 0:
            flag = 0 # 表示负数
            member = abs(member)
            denominator = abs(denominator)

    # 化简分子分母
    gcd = get_gcd(member, denominator) # 最大公约数
    member = member // gcd
    denominator = denominator // gcd
    # 求分母的逆元
    inverse_deno = get_inverse(denominator, p)
    # 求斜率
    k = (member * inverse_deno)
    if flag == 0:
        k = -k
    k = k % p

    # 计算P+Q=(x3,y3)
    x3 = (k ** 2 - x1 - x2) % p
    y3 = (k * (x1-x3) -y1) % p

    return x3, y3

def get_order(x0, y0, a, b, p):
    """
    计算椭圆曲线的阶
    """
    x1 = x0 # -P的横坐标
    y1 = (-1 * y0) % p # -P的纵坐标
    temp_x = x0
    temp_y = y0
    n = 1
    while True:
        n += 1
        # 累加P,得到n*P=0∞
        xp, yp = get_PaddQ(temp_x, temp_y, x0, y0, a, p)
        # 如果(xp,yp)==-P,即(xp,yp)+P=0∞,此时n+1为阶数
        if xp == x1 and yp == y1:
            return n+1
        temp_x = xp
        temp_y = yp

def get_dot(x0, a, b, p):
    """
    计算P和-P
    """
    y0 = -1
    for i in range(p):
        # 满足适合加密的椭圆曲线条件,Ep(a,b),p为质数,x,y∈[0,p-1]
        if i**2 % p == (x0**3 + a*x0 + b) % p:
            y0 = i
            break
    # 如果找不到合适的y0返回False
    if y0 == -1:
        return False
    # 计算-y
    x1 = x0
    y1 = (-1*y0) % p
    return x0, y0, x1, y1

def get_graph(a, b, p):
    """
    画出椭圆曲线散点图
    """
    xy = []
    # 初始化二维数组
    for i in range(p):
        xy.Append(['-' for i in range(p)])

    for i in range(p):
        value = get_dot(i, a, b, p)
        if (value != False):
            x0,y0,x1,y1 = value
            xy[x0][y0] = 1
            xy[x1][y1] = 1

    print('椭圆曲线散点图:')
    for i in range(p):
        temp = p - 1 -i
        if temp >= 10:
            print(temp, end='')
        else:
            print(temp, end='')

        # 输出具体坐标值
        for j in range(p):
            print(xy[j][temp], end='')
        print()

    print(' ', end='')
    for i in range(p):
        if i >= 10:
            print(i, end='')
        else:
            print(i, end='')

    print()

def get_nG(xG, yG, priv_key, a, p):
    """
    计算nG
    """
    temp_x = xG
    temp_y = yG
    while priv_key != 1:
        temp_x, temp_y = get_PaddQ(temp_x, temp_y, xG, yG, a, p)
        priv_key -= 1
    return temp_x, temp_y

def get_KEY():
    """
    生成公钥私钥
    """
    # 选择曲线方程
    while True:
        a = int(input('输入椭圆曲线参数a(a>0)的值:'))
        b = int(input('输入椭圆曲线参数b(b>0)的值:'))
        p = int(input('输入椭圆曲线参数p(p为素数)的值:'))

        # 满足曲线判别式
        if (4*(a**3)+27*(b**2))%p == 0:
            print('输入的参数有误,请重新输入!n')
        else:
            break

    # 输出曲线散点图
    get_graph(a, b, p)

    # 选择基点G
    print('在上图坐标系中选择基点G的坐标')
    xG = int(input('横坐标xG:'))
    yG = int(input('纵坐标yG:'))

    # 获取曲线的阶
    n = get_order(xG, yG, a, b, p)

    # 生成私钥key,且key<n
    priv_key = int(input('输入私钥key(<%d):'%n))
    #生成公钥KEY
    xK, yK = get_nG(xG, yG, priv_key, a, p)
    return xK, yK, priv_key, a, b, p, n, xG, yG

def encrypt(xG, yG, xK, yK,priv_key, a, p, n):
    """
    加密
    """
    k = int(input('输入一个整数k(<%d)用于计算kG和kQ:' % n))
    kGx, kGy = get_nG(xG, yG, priv_key, a, p) # kG
    kQx, kQy = get_nG(xK, yK, priv_key, a, p) # kQ
    plain = input('输入需要加密的字符串:')
    plain = plain.strip()
    c = []
    print('密文为:', end='')
    for char in plain:
        intchar = ord(char)
        cipher = intchar * kQx
        c.append([kGx, kGy, cipher])
        print('(%d,%d),%d' % (kGx, kGy, cipher), end=' ')

    print()
    return c

def decrypt(c, priv_key, a, p):
    """
    解密
    """
    for charArr in c:
        kQx, kQy = get_nG(charArr[0], charArr[1], priv_key, a, p)
        print(chr(charArr[2] // kQx), end='')
    print()


if __name__ == '__main__':
    xK, yK, priv_key, a, b, p, n, xG, yG = get_KEY()
    c = encrypt(xG, yG, xK, yK, priv_key, a, p, n)
    decrypt(c, priv_key, a, p)


由于本人水平有限,文章出现纰漏,还请大佬们斧正。



Tags:加密算法   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
说起区块链,似乎大家都懂一点,再往细里一问,似乎又都不懂了。比如,你问一个人:为什么要挖矿,挖的到底是啥。怕是没几个明白人。本文就是要给你讲明白!前言人们一说起区块链,就常常说...【详细内容】
2021-07-13  Tags: 加密算法  点击:(224)  评论:(0)  加入收藏
来源:麦叔编程作者:kevin。JS逆向是爬虫的难点,是爬虫路上的拦路虎。所谓逆向就是破解网站使用的JS加密算法,拆解相关的参数。然后就可以登堂入室了。 本文总结了JS中最常用的加...【详细内容】
2021-03-04  Tags: 加密算法  点击:(195)  评论:(0)  加入收藏
前几天我发表一片关于RSA的加密算法,很多人留言让我讲解一下ECC 椭圆加密算法。首先我在这里声明一下 椭圆加密算法不像RSA 用中学的数学知识就可以解决。本文中也是参考了网...【详细内容】
2020-12-30  Tags: 加密算法  点击:(222)  评论:(0)  加入收藏
1. 简单介绍3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称。它相当于是对每个数据块应用三次DES加密算法。由于计算机运算能力...【详细内容】
2020-09-25  Tags: 加密算法  点击:(62)  评论:(0)  加入收藏
加密算法我们整体可以分为:可逆加密和不可逆加密,可逆加密又可以分为:对称加密和非对称加密。一、不可逆加密常见的不可逆加密算法有MD5,HMAC,SHA1、SHA-224、SHA-256、SHA-384,和...【详细内容】
2020-08-02  Tags: 加密算法  点击:(57)  评论:(0)  加入收藏
0. 前言这一篇我们将介绍一下.net core 的加密和解密。在Web应用程序中,用户的密码会使用MD5值作为密码数据存储起来。而在其他的情况下,也会使用加密和解密的功能。常见的加...【详细内容】
2020-06-22  Tags: 加密算法  点击:(45)  评论:(0)  加入收藏
RSA加密算法是目前最有影响力的公钥加密算法,并且被普遍认为是目前最优秀的公钥方案之一。RSA是第一个能同时用于加密和数宇签名的算法,它能够抵抗到目前为止已知的所有密码攻...【详细内容】
2020-02-25  Tags: 加密算法  点击:(99)  评论:(0)  加入收藏
当你在浏览器的地址栏上输入https开头的网址后,浏览器和服务器之间会在接下来的几百毫秒内进行大量的通信。InfoQ的这篇文章对此有非常详细的描述。这些复杂的步骤的第一步,就...【详细内容】
2020-02-23  Tags: 加密算法  点击:(74)  评论:(0)  加入收藏
crypto-js是一个前端Javascript标准加密算法库,CryptoJS (crypto.js) 为 JavaScript 提供了各种各样的加密算法。有时候项目涉及到的敏感数据比较多,为了信息安全,我们常常需要...【详细内容】
2020-02-04  Tags: 加密算法  点击:(158)  评论:(0)  加入收藏
加密,简而言之就是借助一种或多种算法将明文信息转换成密文信息,信息的接收方通过密钥对密文信息进行解密获得明文信息的过程。根据加解密的密钥是否相同,加密算法可以分为对称加密、非对称加密和对称加密和非对称加密的...【详细内容】
2019-12-06  Tags: 加密算法  点击:(60)  评论:(0)  加入收藏
▌简易百科推荐
前言Kafka 中有很多延时操作,比如对于耗时的网络请求(比如 Produce 是等待 ISR 副本复制成功)会被封装成 DelayOperation 进行延迟处理操作,防止阻塞 Kafka请求处理线程。Kafka...【详细内容】
2021-12-27  Java技术那些事    Tags:时间轮   点击:(1)  评论:(0)  加入收藏
博雯 发自 凹非寺量子位 报道 | 公众号 QbitAI在炼丹过程中,为了减少训练所需资源,MLer有时会将大型复杂的大模型“蒸馏”为较小的模型,同时还要保证与压缩前相当的结果。这就...【详细内容】
2021-12-24  量子位    Tags:蒸馏法   点击:(9)  评论:(0)  加入收藏
分稀疏重建和稠密重建两类:稀疏重建:使用RGB相机SLAMOrb-slam,Orb-slam2,orb-slam3:工程地址在: http://webdiis.unizar.es/~raulmur/orbslam/ DSO(Direct Sparse Odometry)因为...【详细内容】
2021-12-23  老师明明可以靠颜值    Tags:算法   点击:(7)  评论:(0)  加入收藏
1. 基本概念希尔排序又叫递减增量排序算法,它是在直接插入排序算法的基础上进行改进而来的,综合来说它的效率肯定是要高于直接插入排序算法的;希尔排序是一种不稳定的排序算法...【详细内容】
2021-12-22  青石野草    Tags:希尔排序   点击:(6)  评论:(0)  加入收藏
ROP是一种技巧,我们对execve函数进行拼凑来进行system /bin/sh。栈迁移的特征是溢出0x10个字符,在本次getshell中,还碰到了如何利用printf函数来进行canary的泄露。ROP+栈迁移...【详细内容】
2021-12-15  星云博创    Tags:栈迁移   点击:(19)  评论:(0)  加入收藏
一、什么是冒泡排序1.1、文字描述冒泡排序是一种简单的排序算法。它重复地走访要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地...【详细内容】
2021-12-15    晓掌柜丶韶华  Tags:排序算法   点击:(16)  评论:(0)  加入收藏
在了解golang的map之前,我们需要了解哈希这个概念。哈希表,又称散列表(Hash table),是根据键(key)而直接访问在内存储存位置的数据结构。也就是说,它通过计算出一个键值的函数,将...【详细内容】
2021-12-07  一棵梧桐木    Tags:哈希表   点击:(13)  评论:(0)  加入收藏
前面文章在谈论分布式唯一ID生成的时候,有提到雪花算法,这一次,我们详细点讲解,只讲它。SnowFlake算法据国家大气研究中心的查尔斯&middot;奈特称,一般的雪花大约由10^19个水分子...【详细内容】
2021-11-17  小心程序猿QAQ    Tags:雪花算法   点击:(24)  评论:(0)  加入收藏
导读:在大数据时代,对复杂数据结构中的各数据项进行有效的排序和查找的能力非常重要,因为很多现代算法都需要用到它。在为数据恰当选择排序和查找策略时,需要根据数据的规模和类型进行判断。尽管不同策略最终得到的结果完...【详细内容】
2021-11-04  华章科技    Tags:排序算法   点击:(37)  评论:(0)  加入收藏
这是我在网上找的资源的一个总结,会先给出一个我看了觉得还行的关于算法的讲解,再配上实现的代码: Original author: Bill_Hoo Original Address: http://blog.sina.com.cn/s/bl...【详细内容】
2021-11-04  有AI野心的电工和码农    Tags: KMP算法   点击:(36)  评论:(0)  加入收藏
最新更新
栏目热门
栏目头条